Выбрать главу

Это открытие изменило взгляды О’Кифа, Бёрджесса и их коллег на нейроны места. Поскольку схемы возбуждения этих нейронов однозначно связаны с геометрией пространства, нейробиологи сделали вывод, что эти клетки должны получать информацию о границах откуда-то еще – возможно, от нейронов другого типа, чья задача, по всей видимости, вычислить положение животного относительно границ и передать данные в нейроны места, помогая последним определить местоположение животного. Ученые назвали эти клетки «граничными векторными клетками» (англ. boundary vector cells)[76]. Тринадцать лет спустя, в 2009 году, Колин Левер, нейробиолог из Университета Лидса[77], обнаружил их в соседней с гиппокампом области мозга крыс, которая называется основанием гиппокампа[78]. Это не осталось незамеченным: в науке мало что так радует, как сбывшиеся прогнозы. Более того, чувствительные к границам нейроны недавно были найдены и в основании гиппокампа людей[79].

Граничные векторные клетки (или просто «нейроны границы», как их обычно называют), открытые Левером, работают в точности так, как было предсказано. Так, у животных типичный нейрон границы в основании гиппокампа активизируется, когда животное находится на определенном расстоянии и в определенном направлении от неким образом ориентированной границы. Например, нейрон границы «А» возбудится, как только животное окажется в 5 сантиметрах к востоку от границы, ориентированной в направлении «север – юг», а нейрон границы «В» – когда оно будет в 20 сантиметрах к северу от границы, ориентированной в направлении «восток – запад», и так далее[80]. Таким образом, в отличие от нейронов места, которые возбуждаются в определенных точках или на участках нечеткой формы, нейроны границы возбуждаются внутри вытянутых полос, схожих с полями страницы: если вы идете вдоль здания, нейрон границы в основании вашего гиппокампа будет все время активен (как и на обратном пути, поскольку на нее не влияет направление движения). Если чуть отодвинуться от стены здания, возбуждаться будет другой нейрон.

Левер и его коллеги не могут точно сказать, как именно нейроны границы определяют ориентацию границ и активизируются на столь точном расстоянии от них. Вполне вероятно, что они получают информацию об ориентации от нейронов направления головы – «встроенного» в мозг компаса, – которые тоже обнаружены в основании гиппокампа (ниже мы рассмотрим их более подробно). При определении расстояния нейроны границы явно реагируют на визуальные стимулы, а также на прикосновение (и возможно, на звук), поскольку могут давать отклик, как только граница будет замечена. Левер считает, что некоторые нейроны могут возбуждаться в нескольких сотнях метров или даже километров от границы (хотя и с меньшей точностью) и что животное полагается на эти маркеры «дальнего действия», когда перемещается по открытому пространству, например в поле или в широкой долине.

В связи с этим возникает вопрос: что именно нейроны границы воспринимают как границу? Все, что затрудняет навигацию, но не обязательно делает ее невозможной, полагает Левер. Известно, что нейроны границы реагируют на вертикальные стены, гребни гор, края утесов и расщелин, но навигационное поведение людей и других животных предполагает, что эти клетки могут быть чувствительными к слабым линейным характеристикам, таким как изменение цвета или текстуры пола, границы теней.

Исследователям предстоит еще многое выяснить, но не подлежит сомнению, что границы и нейроны, которые их определяют, чрезвычайно важны для функционирования нейронов места[81], для формирования пространственной памяти и для эффективной навигации. Можно прокладывать путь и при отсутствии границ, используя ориентиры, и в гиппокампальной области имеются два вида клеток, реагирующих именно на них[82], но реакция мозга на границы настолько спонтанна, что они, по всей видимости, имеют особое значение. Животные, в том числе человек, чаще теряют ориентацию в местах, где отсутствуют границы – или невозможно оценить пройденное расстояние. Нейробиологи показали, что если поместить крысу в коробку, а затем убрать или разрушить стенки, то паттерн полей места полностью меняется, и многие нейроны места просто перестают возбуждаться[83]. Из всех пространственных нейронов в мозге младенца нейроны границы формируются первыми, даже раньше самих нейронов места, – возможно, они являются тем клеем, который скрепляет всю когнитивную карту.

вернуться

76

Эта модель функционирования граничных векторных клеток была разработана Томом Хартли из Йоркского университета, Нилом Бёрджессом, Колином Левером и Франческой Какуччи из Университетского колледжа Лондона и О’Кифом. См.: T. Hartley, N. Burgess, C. Lever, F. Cacucci and J. O’Keefe (2000). Modeling place fields in terms of the cortical inputs to the hippocampus // Hippocampus. 10. Р. 369–379. Современная версия: C. Barry, C. Lever, R. Hayman, T. Hartley, S. Burton, J. O’Keefe, K. Jeffery (2006). The boundary vector cell model of place cell firing and spatial memory // Reviews in the Neurosciences. 17 (1–2). Р. 71–97.

вернуться

77

В настоящее время работает в Даремском университете.

вернуться

78

Colin Lever et al. (2000). Boundary vector cells in the subiculum of the hippocampal formation // Journal of Neuroscience 29 (31). Р. 9771–9777. Примерно в это же время другие нейробиологи, в том числе лауреаты Нобелевской премии Мэй-Брит Мозер и Эдвард Мозер, открыли клетки, похожие на граничные векторные клетки, в энторинальной коре – той области, где расположены нейроны решетки. Энторинальные граничные векторные клетки назвали «нейронами границы», и главное их отличие состоит в том, что они возбуждаются только при приближении животного к границе (на расстояние менее 10 см), тогда как граничные векторные клетки, расположенные в субикулуме, возбуждаются на разном расстоянии от границ и при разной ориентации по отношению к ним. Одна лаборатория также сообщала о нейронах «отсутствия границ», которые возбуждались везде, за исключением тех случаев, когда животное находилось вблизи определенной границы, то есть были противоположностью нейронов границы.

вернуться

79

Sarah Ah Lee et al. (2017). Electrophysiological signatures of spatial boundaries in the human subiculum // Journal of Neuroscience. 38 (13). Р. 3265–3272.

вернуться

80

Я использую термины «север», «юг», «восток» и «запад» в относительном значении: пространственные нейроны мозга чувствительны не к направлениям на страны света, а к геометрии пространства, в котором находится животное. Вместо «север – юг» мы можем говорить «верх – низ», а вместо «восток – запад» – «слева – справа». Важно лишь расположение границ относительно друг друга.

вернуться

81

Кроме того, они, по всей вероятности, очень важны для функционирования нейронов решетки. Не так давно Мэй-Брит Мозер и ее группа из Института системной неврологии им. Кавли в норвежском Тронхейме обнаружили, что у крыс, проведших первые недели своей жизни в непрозрачном сферическом пространстве, где отсутствуют границы, которые можно использовать для ориентации, практически не регистрируется активность нейронов решетки, когда животных наконец выпускают в открытое пространство, и это дает основание предположить, что границы (и, вполне вероятно, формирование векторных нейронов границы) необходимы для формирования рабочих нейронов решетки. См.: I. U. Kruge et al. Grid cell formation and early postnatal experience. Стендовый доклад на ежегодной встрече Общества нейронаук, Сан-Диего, 3–7 ноября 2018 г.

вернуться

82

Это «векторные нейроны ориентиров» и «векторные нейроны объектов». Об открытии первых сообщалось в следующей статье: Sachin S. Deshmukh and James J. Knierim (2013). Influence of local objects on hippocampal representations: Landmark Vectors and Memory // Hippocampus. 23. Р. 253–267. Векторные нейроны объектов, обнаруженные в энторинальной коре крыс, примыкающей к гиппокампу области мозга, в лаборатории Мэри-Брит и Эдварда Мозера в 2017 г., по всей видимости, имеют схожую функцию, реагируя на заметные объекты (но обычно не стены или границы) на определенном расстоянии и направлении от животного. Øyvind Arne Høydal et al. (2019). Object-vector coding in the medial entorhinal cortex // Nature. 568. Р. 400–404.

вернуться

83

Barry et al. (2006).

полную версию книги