— Чего-чего? — переспросил президент.
— Есть такая наука — сопротивление материалов, — объяснил я.
— А чем она занимается?
Я вынул из кармана карандаш и сделал вид, что собираюсь его переломить.
— Видите, карандаш не хочет ломаться, он сопротивляется моим усилиям. Значит, и в нём тоже заключена какая-то сила, иначе он не смог бы мне сопротивляться. Однако (тут я сломал карандаш) у меня силёнок всё-таки побольше, чем у деревянного карандашика. Но вот если бы этот карандашик был сделан не из дерева, а из стали, тут уж не хватило бы сил у меня. Значит, каждый материал сопротивляется по-своему, у каждого свои силы сопротивления. Вот наука сопротивления материалов и изучает эти внутренние, скрытые в материале силы. Не зная их, не построить ни путной машины, ни здания, ни моста. Они будут разрушаться тогда, когда этого никто не ожидает.
— А не проще ли просто сделать карандаш потолще, вот он и не сломается! — предложил президент.
— Можно и так, — согласился я, — но сколько же на это уйдёт лишнего материала? Да и удобно ли будет писать таким толстым, тяжёлым карандашом? Об этом ты подумал? Допустим, ты укрепил в машине болты потолще — вот такие огромные! Для этого тебе придётся и отверстие для болтов увеличить. А это значит, что придётся увеличить размеры станины, а то она будет состоять из одних дырок. Увеличишь станину — надо увеличить и фундамент под ней. От этого установка станет тяжелее. Придётся укреплять стены, а затем и фундамент под зданием. Дедка за репку, бабка за дедку… Словом, начали с болта, а кончили полной реконструкцией завода. Нет, брат Нулик, размеры просто так увеличивать негоже. Это, как ты видел, неэкономично.
— Ну, если опять в ход пошла экономика, сделаем болты поменьше, — беспринципно согласился Нулик.
— Но ты забыл, что при этом болты перестанут быть прочными. Вот мы и встали перед задачей — какой размер выбрать? Малый — плохо и большой — тоже плохо. Надо найти такой самый выгодный и единственно возможный размер, чтобы были и овцы целы и волки сыты. Вот выбором таких наивыгоднейших размеров и наилучших материалов и занимается наука о сопротивлении материалов. Понимаешь теперь, что означает название «Стальные мускулы»?
— Что да, то да. Неясно только, почему заведующего называют упругистом?
— Ну, это уж пустяки. Дело в том, что науку о сопротивлении материалов называют также теорией упругости. А теория упругости основана на том допущении, что все тела обладают идеально упругими свойствами. Согни стальную линейку, а затем снова отпусти конец. Линейка немедленно вернётся в прежнее положение. Значит, линейка упруга. А теперь изогни кусок теста.
— Тесто нипочём не выпрямится, — деловито сказал президент.
— Правильно. Тесто не упруго. Так вот, сопротивление материалов занимается только упругими телами, а к ним относятся сталь, дерево, некоторые пластики. К упругим телам близки также чугун, алюминий и некоторые другие материалы, главным образом строительные. Кстати, само слово «упругость» было введено в науку великим русским учёным Ломоносовым. Ну, это я так, между прочим. А сейчас перейдём к гвоздям. К тем самым, на которые упругист и Магистр вешали гири. Итак, если на гвоздь, вбитый в стену, повесить гирю, гвоздь, само собой разумеется, начнёт изгибаться. Чем тяжелее гиря, тем больше будет прогибаться гвоздь. Если же вес слишком велик, гвоздь сломается. Так вот, наука о сопротивлении материалов точно выяснила, на, какой вес рассчитаны гвозди разных диаметров и разных материалов. Конечно, в этом ей помогла математика — без математики сопротивление материалов как без рук! Оказалось, что прочность гвоздя возрастает вместе с его диаметром, только не прямо пропорционально, а гораздо быстрее — в третьей степени. Если диаметр увеличить в два раза, прочность гвоздя возрастёт в 8 раз (23=8). Увеличим диаметр в 3 раза, прочность увеличится в 27 раз (33=27). Этот закон подметил ещё великий Галилей, которого наравне с английским учёным Робертом Гуком следует считать зачинателем теории упругости, а значит, и науки о сопротивлении материалов. Надеюсь, всё ясно? Вопросов нет?
— Вопросов нет, — отозвался президент. — Но… есть уточнение. Выходит, Единичка собиралась повесить на гвоздь гирьку в 8 килограммов?
— Верно. Раз первый гвоздь выдерживал 2 килограмма, стало быть, второй, вдвое толще, обязан выдержать 8, то есть два в третьей степени.
— Но только в том случае, если оба гвоздя из одного и того же материала, — снова уточнил президент.
— Ещё раз молодец!
Нулик засиял как медный грош и продолжал разглагольствовать. Впрочем, лучше бы ему остановиться.