Выбрать главу

Ряд элементов открыл Берцелиус: селен (1817г.), кремний[151] (1823 г.), металлические цирконий (1824 г.) и тантал (1825 г.). В 1829 г. в минерале торите он обнаружил торий, а спустя год совместно с Н. Сефстрёмом выделил из железной руды ванадий[152].

В те же годы X. Эрстед открыл алюминий (1825 г.), полученный в чистом виде двумя годами позднее Ф. Вёлером. В 1826 г. А. Балар выделил из морской воды бром и сумел доказать его родство с хлором и иодом.

В похожем на кварц минерале петалите Ю. Арфведсон обнаружил литий. Он многократно и различными способами анализировал этот минерал, и всегда суммарный состав продуктов оказывался заниженным на 4% . Наконец, Арфведсон провел сплавление минерала с углекислым барием и отделил кремневую кислоту и глинозем (оксид алюминия). Избыток ВаСОз он разложил серной кислотой и полученный после отделения осадка фильтрат выпарил досуха. Так Арфведсон получил нейтральную сернокислую соль, не похожую ни на соль калия, ни на соль магния. К водному раствору соли Арфведсон прибавил уксуснокислый барий до полного осаждения сульфата бария. Фильтрат был выпарен досуха и остаток нагрет в платиновом тигле. Он содержал тугоплавкую, неизвестную до сих пор "щелочь", для которой Берцелиус предложил название "литион"[153], так как эта щелочь в отличие от поташа и соды впервые была найдена в залежах минералов. Металлический литий Арфведсон не выделил. Это удалось сделать впервые Дэви электролитическим методом.

С 1839 до 1844 г. были открыты лантан (1839г.), тербий (1843 г.) и эрбий (1843 г.) (эти три элемента открыл ученик Берцелиуса К. Мосандер) и рутений (К. Клаус, 1844 г.).

От цезия до фтора

Уже давно было известно, что многие элементы при внесении их соединений в пламя изменяют окраску пламени. Также было известно, что с помощью призмы можно разложить свет на его составные части (на это еще в 1666 г. указывал Ньютон). Однако только немецким ученым Р. Бунзену и Г. Кирхгофу удалось создать на этой основе новый аналитический метод, благодаря которому стало возможным открытие новых химических элементов.

Роберт Вильгельм Бунзен (1811-1899)

Роберт Вильгельм Бунзен родился в 1811 г. в Гёттингене[154]. Его отец был профессором и библиотекарем университета. Бунзен изучал химию и минералогию в Гёттингенском университете. После защиты диссертации он получил стипендию для стажировки в лабораториях Берлина и Вены. Изучая геологию и знакомясь с промышленными и металлургическими производствами, Бунзен много путешествовал, нередко пешком.

В 1836 г., получив кафедру химии в Высшей промышленной школе в Касселе, Бунзен занялся исследованием процессов, происходящих в доменных печах. В 1839 г. его пригласили на должность профессора Марбургского университета. В области органической химии Бунзен занимался исследованием соединений какодила[155], отличающихся крайне неприятным запахом. В неорганической химии ученый создал угольно-цинковый элемент, что привело к экономии дорогостоящей платины. Используя его, Бунзен проводил работы по электролитическому получению магния, кальция, лития, алюминия. В 1851 г. ученый был приглашен заведовать кафедрой химии в Университете г. Бреслау[156], а в 1852 г.- в Университете г. Гейдельберга. Умер Бунзен в 1899 г.

Экспериментальная химия обязана Бунзену многими ценными открытиями: спектральный анализ, бунзеновская горелка, водоструйный насос, зажим с винтом, ледяной калориметр, прибор для газового анализа.

Бунзен и Кирхгоф в 1859-1860 гг. обнаружили, что излучение жидких или твердых тел, раскаленных добела, или газов, находящихся под большим давлением, разлагается призмой на сплошной спектр и что каждый элемент излучает характерный для него спектр. В 1860 г. они создали первый спектроскоп, с помощью которого относительно простым способом можно было установить спектр любого элемента. Этот прибор оказался превосходным инструментом для определения очень малых (следовых) количеств различных веществ.

Когда в пламя бунзеновской горелки вносили какое-нибудь вещество, то в спектроскопе, на стенке, расположенной позади призмы, появлялись цветные линии. Этим методом, названным пламенной спектроскопией, определялись не все вещества. Поэтому позднее был предложен метод искровой спектроскопии: пары металлов доводились до свечения с помощью электрической дуги. Несколько позже был предложен также метод абсорбционной спектроскопии, в котором вещество располагалось между ярким источником света и наблюдателем. Вещество при этом поглощало все лучи от источника света, за исключением тех, которые оно само излучало, а на стенке спектроскопа вместо цветных линий появлялись черные линии. Этот метод применялся также для исследования спектров Солнца и других звезд.

вернуться

151

Точнее Берцелиус идентифицировал кремний, который впервые получили Гей-Люссак и Тенар в 1811 т.-Прим. перев.

вернуться

152

В 1830 г. Н. Сефстрём открыл ванадий, а в 1831 г. Берцелиус подробно изучил химические свойства этого элемента. См. [197, с. 208].- Прим. ред.

вернуться

153

От греческого "литое" — камень.- Прим. перев.

вернуться

154

О жизни и деятельности Бунзена см. также в книге [180, с. 231-236].- Прим. ред.

вернуться

155

Различные производные радикала (CH3)2As-; в виде жидкости, содержащей, как позднее выяснилось, главным Образом оксид тетраметил-диарсина (CH3)2As-О-As(CH3)2, впервые получил в 1760 г. французский химик Клод Луи Каде де Гассикур (1731-1793). Бунзен выделил из жидкости Каде чистый оксид тетраметилдиарсина и назвал его алкаларсином (от слов "алкоголь" и "арсин"), так как первоначально считал его аналогом этилового спирта, в котором кислород заменен мышьяком. Название "какодил" (от греческого "какодес" — неприятно пахнущий и "хюле" — вещество) предложил в 1841 г. Й. Я. Берцелиус. Бунзен полагал, что им получен свободный радикал какодил (диметиларсин (CH3hAs) и приготовил ряд его производных — фторид, бромид, иодид, цианид и др., в которых группа (CH3)2As играла как бы роль элемента. Это было признано химиками одним из самых веских доводов в пользу правоты теории радикалов. Позднейшие исследования показали, что Бунзен получил не свободный радикал (CH3)2As, а его димер (CH3)4As2.- Прим. перев.

вернуться

156

Ныне г. Вроцлав в ПНР.- Прим. ред.