Выбрать главу

Содержимое Вселенной

«Что там?» — привычный вопрос людей, вглядывающихся в небо.

Попытки астрономии ответить на него в отношении всей Вселенной то дразнят нас своими поразительными ответами, то обескураживают столь же поразительными вопросами.

Содержимое всей Вселенной можно выразить в понятиях ее массы/энергии (масса и энергия оказываются взаимозаменяемыми величинами согласно знаменитому уравнению Эйнштейна: энергия = масса х квадрат скорости света, или Е = mc2). В нижеследующей таблице представлены самые последние оценки содержимого Вселенной в величинах массы и энергии, сопровождаемые краткими пояснениями.

Напрашивается поразительный вывод: при всей неуловимости темная энергия и темная материя составляют 96 % Вселенной и определяют ее поведение.

Поэтому вполне справедливо задаться вопросом: как астрономия пришла к такому пониманию Вселенной? Подобно хорошему детективному сюжету наше понимание приходило мучительно, шаг за шагом. Ныне это обычно происходит так: усовершенствованная или новая часть экспериментальной оснастки позволяет увидеть нечто новое. Затем теоретики стараются объяснить новые данные посредством существующих теорий или же выдвигают иные гипотезы. Потом делаются предсказания и проводятся новые опыты для уяснения того, как действительность согласуется с предсказанием (можно вообразить, с каким ликованием экспериментаторы доставляют теоретикам щекотливые факты).

В данной главе мы покажем, как приходило к астрономии ее нынешнее понимание Вселенной. Особое внимание будет обращено на скопления звезд, именуемые галактиками, и способы измерения расстояний до звезд и галактик и их скоростей. В заключение мы исследуем путь к возможному решению задач, связанных с преобладающими во Вселенной темной энергией и темной материей.

Измерение межзвездных расстояний

Вселенная полна невообразимого числа объектов (которых, выражаясь памятными многим словами астронома Карла Сагана, миллиарды и миллиарды). Начнем же, казалось бы, с простого вопроса об одном из этих объектов, звезде. Насколько отстоит от нас та или иная звезда? При взгляде на звезды у себя над головой привычное чувство расстояния нас подводит. Все звезды кажутся одинаково удаленными. Планеты и звезды столь далеки, что представляются расположенными на одном расстоянии. Вот почему небо выглядит как купол.

Поскольку оба наших глаза смотрят на предмет с различных положений, у каждого глаза своя собственная видимость. Данное явление именуется параллаксом, и землемеры (геодезисты) пользуются им для точного определения расстояния. Из-за малой удаленности глаз друг от друга с их помощью нельзя точно оценить большие расстояния.

Тогда тем более удивительно, что самый простой астрономический способ определения расстояния основан на параллаксе. Вот как он действует. Если одну и ту же звезду наблюдать в начале и в конце шестимесячного промежутка времени, она видна по двум различным зрительным осям (подобно тому как наши глаза видят удаленный предмет с двух точек) (рис. 6.1). Измеряя угол между этими зрительными осями (угол параллакса) и зная, что основание треугольника равно поперечнику орбиты обращения Земли вокруг Солнца, можно вычислить расстояние до звезды в соответствии с тригонометрическими соотношениями. Этот расчет впервые сделал немецкий астроном Фридрих Бессель в 1838 году при измерении расстояния до звезды 61 Лебедя.

Рис. 6.1. Измерение расстояния на основе параллакса

Данный способ измерения расстояния служит основой при определении чаще всего используемой в астрономии единицы — парсека (пк). Звезда, угол параллакса которой после шестимесячного промежутка времени составляет 1 с (60 с в 1 мин, 60 мин в 1°, 360° во всей окружности), считается удаленной на один парсек. Наша ближайшая звезда Альфа Центавра (в действительности система из трех звезд) находится на расстоянии чуть больше одного парсека. Если отправиться к Альфе Центавра со скоростью звука, путешествие займет свыше миллиона лет. Даже свету с его сумасшедшей скоростью потребуется на это более четырех лет.

В пределах 10 пк от Земли находится немногим более 300 звезд, так что мы можем определить расстояние до этих ближайших соседей посредством параллакса. Поскольку с удалением звезд уменьшается и угол параллакса, предел для измерений наступает примерно при 1 00 пк, когда возможно получение приемлемых результатов. Таким образом, звезды и галактики на расстоянии тысячи парсек (килопарсек, кпк) или миллионов парсек (мегапарсек, Мпк) оказываются слишком далекими, чтобы измерить расстояние до них посредством параллакса. Для решения данной задачи разработаны другие способы, которые мы изучим позднее.

Галактики: первые теории и наблюдения

Теперь посмотрим, как астрономия пришла к пониманию галактик. Слово галактика греческое и означает «млечный путь». Шведский философ Эмануэль Сведенборг пришел к заключению, что все звезды образуют большое сообщество, где Солнечная система — лишь его часть. В книге Principia Rerum Naturalium (1734) он предположил, что Солнечная система, состоящая из светила и планет, образовалась из быстро вращающейся туманности. При этом Сведенборг не руководствовался никакими научными наблюдениями, хотя и изучал точные науки. Данные сведения он почерпнул в ходе спиритического сеанса, где якобы присутствовали небесные посланники. Дальнейшие видения побудили Сведенборга предать огласке полученные им сведения богословского свойства, и в итоге из его учения вышла религия [сведенборгиан] «Новая церковь» [именуемая еще «Новым Иерусалимом»].

Историю галактик продолжил англичанин Томас Райт из Дарема, занимавшийся изготовлением научных орудий и игрушечных солнечных систем, которые продавал вельможам. В книге «Оригинальная теория, или Новая гипотеза о Вселенной, основанная на законах природы и объясняющая с помощью математических принципов наиболее важные явления видимого мироздания, в частности Млечного Пути» (1750) Райт высказывает мысль, что звезды в Млечном Пути распределены в виде жернова. Он говорил: «Глядя всякий раз на небо, никак не могу взять в толк, почему все не идут в астрономы». Как изготовитель научных орудий, он наверняка имел доступ к телескопам. Однако никаких астрономических наблюдений он не издавал. Книга Райта тоже затрагивает религиозные вопросы, например о физическом местонахождении божественного престола.

Заметка о книге Райта в гамбургском журнале попала на глаза блестящему философу Иммануилу Канту. И хотя Кант неверно истолковал сообщение о работе Райта, ему удалось направить ее в созидательное русло. В 1755 году Кант предполагает, что Млечный Путь представляет собой линзовидный диск из звезд, вращающийся вокруг своей оси. Затем он утверждает, что размытые световые пятна, именуемые туманностями, на самом деле представляют собой системы звезд, подобные Млечному Пути, но находящиеся на большом удалении. Кант именует их островными вселенными.[21] В ту пору не было средств, чтобы прикинуть расстояние до этих туманностей. Даже с помощью Бесселева метода параллакса, разработанного почти столетие спустя, не справиться с такой задачей.

Итак, начало изучению астрономией галактик положили богословски настроенный мастеровой и философ. Следующий важный вклад в понимание галактик суждено было внести ученому-наблюдателю. Любопытно, что его не занимали сами галактики; он составил перечень объектов, которых следовало избегать при поиске комет. Шарль Мессье (1730–1817) был столь заядлым охотником за кометами, что король Людовик XV прозвал его «кометной ищейкой». За всю жизнь Мессье открыл один или одновременно с кем-то 20 комет и наблюдал еще 24. Он часто находил неподвижные объекты, которые не могли быть кометами. Небольшими телескопами, которыми пользовался Мессье — в поперечнике они не превышали трех с половиной дюймов, — невозможно было различить в туманностях отдельные звезды. Наблюдаемые им «туманности» представлялись световыми пятнышками неведомого происхождения. Он составил перечень координат свыше 100 туманностей, снабдив их числами. Например, М31 ныне известна как туманность Андромеды, а М100 (рис. 6.2) — как Спиральная галактика.

вернуться

21

Ни «линзовидные дисков», ни «островные вселенные» у Канта в его «Всеобщей естественной истории и теории неба…» (1755) нет. Вот его слова: «Все неподвижные звезды, доступные глазу в неизмеримой глубине неба, где они кажутся рассеянными с какой-то расточительностью, представляют собой солнца и центры подобные же систем… Скопление звезд, расположенные возле одной общей плоскости, составляет такую же систему, как планеты! нашего солнечного мира вокруг Солнца. Млечным Путь представляет собой зодиак этих миров высшего порядка… Разве нельзя на основании столь полного сходства в строении прийти к заключению об одинаковой причине и одинаковом способе образования? Но если неподвижные звезды образуют одну систему, размеры которой определяются сферой притяжения центрального тела, то разве не могут возникать еще иные системы солнц и, так сказать, еще иные млечные пути в безграничном мировом пространстве? Мы с изумлением увидели на небе фигуры, которые представляют собой не что иное, как именно подобные системы неподвижные звезд, ограниченные общей плоскостью, — млечные пути, если можно так выразиться, которые представляются нашему глазу при различном положении относительно его в виде эллиптических образований, мерцающих слабым светом из-за бесконечной удаленности от нас…» (Кант И. Докритические произведения). Далее встречается выражение «рассеянная масса мирозданий» (там же).