Искомая вероятность равна 52·12!/(52!/36!) = 12!·39!/51! Обратная величина может трактоваться как среднее число игр до появления «масти».
Из таблиц[6] находим:
lg 12! = 8.68034, lg 51! = 66.19065,
lg 39! = 46.30959, lg (12!·39!) = 54.98993,
lg (12!·39!) = 54.98993, lg(12!·39!/51!) = 11.20072,
12!·39!/51! = 1.588·10−11.
При вычислениях такого рода точный ответ часто приводит в замешательство. Что из того, что в одном из 160 миллиардов случаев имеется возможность получить «масть»? Сколь часто должны мы были бы слышать о таком событии? Явно завышая числа, предположим, что в США в бридж играют 10 миллионов, и что каждый игрок играет 10 раз всякий день в году. Это дает 36½ миллиардов игр в год, так что исключительную сдачу можно ожидать один раз в 4 года (причем о некоторых из них заведомо не будет объявлено публично). Даже в два раза большее количество игроков, которые играют к тому же в два раза чаще, привело бы лишь к одной такой сдаче в течение года.
Чем можно объяснить значительную большую частоту сообщений о появлении «масти»? Многими причинами, среди которых следует назвать склеивание карт и плохое тасование. (Нашумевший случай «масти», действительно имевший место, произошел при первой раздаче новой колоды.)
Несомненно также, что некоторые репортеры стали жертвами шуток и мистификаций. Если вы подстроили своей бабушке «масть» в день ее рождения и хотите потом сознаться в этом, то вы, наверное, все же промолчите, после того как об этом исключительном событии будут оповещены все родственники, друзья и. репортеры. С другой стороны, ввиду внимания к столь редким явлениям, кажется неправдоподобным, чтобы такую комбинацию подстраивали шулера.
Несколько другим путем решения этой задачи является применение биномиальных коэффициентов, которые равны числу различных способов размещений a элементов одного рода и b элементов другого в строку. Например, 3 буквы a и 2 буквы b могут быть записаны подряд 10 различными способами, что нетрудно проверить на пальцах, начиная с aaabb и кончая bbaaa. Биномиальный коэффициент записывается в этом случае как и равен числу способов различного упорядочения пяти предметов, два из которых одного рода и три другого. С помощью факториалов этот коэффициент перепишется в виде
В более общей ситуации, когда имеется n предметов, из которых a одного рода, и n − a — другого, число способов их упорядочения дается формулой
В нашей задаче число способов выбрать 13 карт из полной колоды равно
Тринадцать пик можно получить
способом, так как 0! = 1. Учитывая, что имеется четыре масти, получим окончательно вероятность в виде 4×13!·39!/52!, как уже было установлено ранее.
Биномиальные коэффициенты обсуждаются в в цитированной выше книге Мостеллера, Рурке и Томаса «Вероятность» на стр. 33–39.
9. «Крэпс»
Эта игра, как мы скоро увидим, удивительно близка к безобидной, хотя все же и невыгодна для игрока.
Подсчитаем сначала вероятности для полного числа очков на двух костях. Сделаем кости различимыми, окрасив их, скажем, в красный и зеленый цвета. Тогда подбрасывание 2-х костей имеет 6×6 = 36 равновероятных исходов, которые приведены ниже в таблице.
Зеленая кость | |||||||
1 | 2 | 3 | 4 | 5 | 6 | ||
Красная кость | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
2 | 3 | 4 | 5 | 6 | 7 | 8 | |
3 | 4 | 5 | 6 | 7 | 8 | 9 | |
4 | 5 | 6 | 7 | 8 | 9 | 10 | |
5 | 6 | 7 | 8 | 9 | 10 | 11 | |
6 | 7 | 8 | 9 | 10 | 11 | 12 |
В клетках указана соответствующая сумма очков.
Простым подсчетом мы находим распределение вероятностей суммы очков при одновременном подбрасывании двух костей.
Сумма | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
P(суммы) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 |
Здесь P обозначает вероятность появления соответствующей суммы очков.