Когда произойдет встреча?
84. Три машины. Три машины едут по дороге в одном направлении и в некоторый момент времени располагаются относительно друг друга следующим образом. Эндрюс находится на некотором расстоянии позади Брукса, а Картер — на расстоянии, вдвое превышающем расстояние от Эндрюса до Брукса, перед Бруксом. Каждый водитель едет с постоянной скоростью, и Эндрюс нагоняет Брукса через 7 мин, а затем еще через 5 мин догоняет Картера.
Через сколько минут после Эндрюса Брукс догонит Картера?
85. Муха и автомобили. Длина дороги 300 км. Автомобиль А стартует на одном конце дороги в полдень и движется с постоянной скоростью 50 км/ч. В то же самое время на другом конце дороги стартуют автомобиль В с постоянной скоростью 100 км/ч и муха, делающая 150 км/ч. Встретив автомобиль А, муха поворачивает и летит навстречу В.
1) Когда муха встретит В?
2) Если бы, встретив В, муха повернула, полетела навстречу А, встретила его, снова повернула и так продолжала летать между А и В, пока они не столкнулись бы, то когда автомобили раздавили бы муху?
86. Лестницы метро. Как-то, выходя из станции метро «Керли-стрит», мы столкнулись с молодым атлетом Перси Лонгмеиом. Он остановился на эскалаторе и сказал:
— Вверх по эскалатору я всегда иду. Знаете ли, лишняя тренировка никогда не помешает. Этот эскалатор самый длинный на линии — почти тысяча ступенек. Но вот что интересно — и это относится и к другому, меньшему эскалатору, по которому мне часто приходится подниматься: если, поднимаясь вверх, я шагаю через две ступеньки, то на последний шаг приходится одна ступенька; если я шагаю через три ступеньки — то две ступеньки; если через четыре — то пять; если через пять — то четыре; если через шесть — то пять и, наконец, если я шагаю через семь ступенек, то на последний шаг приходится шесть ступенек. Почему так происходит, не знаю.
Когда Перси пошел дальше вверх, перешагивая через три ступеньки сразу, мы рассмеялись и мой спутник сказал:
— Он едва ли подозревает, что если бы делал шаги в 20 ступенек, то на последний шаг ему их осталось бы 19!
Сколько ступенек в эскалаторе на станции «Керли-стрит», если верхнюю площадку считать ступенькой, а нижнюю нет?[6]
87. Автобусная прогулка. Джордж отправился с любимой девушкой покататься на автобусе, но, подсчитав свои ограниченные ресурсы, понял, что возвращаться назад им придется пешком.
Если скорость автобуса 9 км/ч, а наша пара пешком делает 3 км/ч, то как далеко они могут прокатиться, чтобы на всю прогулку туда и обратно затратить 8 ч?
88. Транспортная головоломка. Двенадцать солдат должны одновременно как можно быстрее попасть в пункт, расположенный в 20 км от их местонахождения. Для этого они остановили небольшую автомашину.
— Я еду со скоростью 20 км/ч, — сказал водитель, — но с собой могу одновременно взять только четверых. С какой скоростью вы идете пешком?
— Каждый из нас проходит 4 км/ч, — ответил один из солдат.
— Прекрасно, — воскликнул водитель, — тогда я поеду вперед с четверыми из вас, подвезу их на какое-то расстояние, затем вернусь и посажу еще четверых, подвезу их тоже и возвращусь за остальными. От вас требуется лишь одно: все время, пока вы не едете на машине, идти пешком, я позабочусь об остальном.
Солдаты отправились в путь ровно в полдень. Когда они прибудут на место?
89. Чему равно расстояние? «Пароход, — заметил один из наших офицеров, вернувшихся с Востока, — способен развивать по течению скорость 20 км/ч, а против течения — только 15 км/ч. Поэтому весь путь между двумя пунктами вверх по течению занимает у него на 5 ч больше времени, чем вниз по течению».
Мы все не могли удержаться от того, чтобы не попытаться определить в уме расстояние между этими двумя пунктами. Чему оно равно?
90. Туда и обратно. Полковник Крэкхэм утверждает, что его приятель, мистер Уилкинсон, идет от своего загородного дома до ближайшего города со скоростью 5 км/ч, а возвращаясь немного усталым, проходит тот же путь со скоростью 3 км/ч. Путешествие туда и обратно занимает у него ровно 7 ч.
Как далеко от города расположен дом мистера Уилкинсона?