Мне тоже захотелось разобраться самому в этой задаче. Как вы думаете, сколько весило милое дитя?
99. Фрукты для варенья. Для варки варенья понадобилось взвесить свежие фрукты. Оказалось, что яблоки, груши и сливы уравновешивают друг друга, как показано на рисунке.
Не могли бы вы сказать, сколько слив уравновесят одну грушу? Относительные размеры плодов на рисунке изображены неверно (это сделано специально), но мы должны считать, что плоды одного вида равны по весу.
Очевидно, что 3 яблока и груша весят столько же, сколько 10 слив, и что яблоко и 6 слив уравновешивают одну грушу. Но вот сколько слив потребуется, чтобы уравновесить грушу?
100. Взвешивание чая. Бакалейщику потребовалось расфасовать 20 фунтов китайского чая по двухфунтовым пакетам, но у него куда-то запропастились гири. После тщетных поисков он нашел только пяти- и девятифунтовую гири.
Как может бакалейщик наиболее быстро выполнить свою работу? Скажем сразу, что произвести требуется лишь 9 взвешиваний.
101. Особое число. Какое число образовано из пяти последовательных цифр (идущих не обязательно по порядку) так, что число, образованное первыми двумя цифрами, умноженное на среднюю цифру, дает число, образованное последними двумя цифрами. (Например, если мы возьмем число 12 896, то 12, умноженное на 8, дает 96. Но, к несчастью, 1, 2, 6, 8, 9 не являются последовательными цифрами, так что этот пример в качестве решения не пригоден.)
102. Пять карточек. У меня пять карточек, на которых изображены цифры 1, 3, 5, 7 и 9. Как расположить их в ряд таким образом, чтобы произведение числа, образованного первой парой карточек, на число, образованное последней парой карточек, минус число, стоящее на средней карточке, равнялось числу, составленному из повторений одной и той же цифры? Например (см. рисунок), 31, умноженное на 79, минус 5 равно 2444; последнее число подошло бы нам, если бы вместо 2 на первом месте стояло тоже число 4.
Очевидно, должно быть два решения, поскольку обе пары карточек — две первые и две последние — расположены совершенно симметрично.
103. Цифры и квадраты. Какой наименьший квадрат целого числа оканчивается наиболее длинной последовательностью одинаковых цифр?
Так, если бы наиболее длинная последовательность одинаковых цифр составила пять, то нам подошло бы число 24 677 777 (разумеется, если бы оно было наименьшим квадратом, но это неверно). Нуль не считается допустимой цифрой.
104. Две суммы. Можете ли вы расположить цифры 1, 2, 3, 4, 5, 7, 8, 9 двумя группами по четыре цифры в каждой так, чтобы суммы чисел, составленных из цифр каждой группы, были равны между собой?
Очень просто получить ответ, заменив 9 на 6. Например, каждая из сумм двух групп чисел 1, 2, 7, 8 и 3, 4, 5, 6 равна 18. Но такая замена не допускается.
105. Повторяющаяся четверка цифр. Если мы умножим 64 253 на 365, то получим 23 452 345, где первые четыре цифры повторяются.
На какое наибольшее число нужно умножить 365, чтобы получить аналогичное произведение, содержащее восемь цифр, из которых первые четыре повторяются?
106. Легкое деление. Разделив число 8 101 265 822 784 на 8, вы убедитесь, что ответ можно получить, просто переставив 8 из начала в конец числа!
Не могли бы вы найти число, начинающееся с 7, которое можно разделить на 7 столь же простым способом?
107. Недоразумение. Один американский читатель попросил меня найти число, составленное из любого количества цифр, для которого деление на 2 можно выполнить, переставив последнюю цифру в начало. По-видимому, эта задача возникла у него после того, как он познакомился с неправильно сформулированной предыдущей задачей. Если бы требовалось переставить в конец первую цифру, то ответом служило бы число 315 789 473 684 210 526, а отсюда легко было бы найти решение, начинающееся с любой цифры. Но если требуется переставить цифру из конца в начало, то для делителя 2 решения нет. Однако существует решение для делителя 3. Не могли бы вы его найти?
108. Две четверки. Меня постоянно спрашивают о старой головоломке «Четыре четверки». Я опубликовал ее в 1899 г., но потом выяснил, что впервые она была опубликована в первом томе журнала Knowlege за 1881 г. С тех пор к ней обращались различные авторы. Формулируется головоломка так: «Найти все возможные числа, которые можно получить из четырех четверок (не больше и не меньше) с помощью различных арифметических знаков. Например, число 17 можно представить в виде 4 × 4 + 4/4, число 50 — в виде 44 + 4 +