Благодаря наличию в составе ОС QNX сетевой подсистемы QNET, органично обеспечивающей «прозрачную» интеграцию сетевых узлов в единую многомашинную систему, возникает дополнительный источник параллелизма (а вместе с тем и дополнительных хлопот), еще более усложняющий общую картину: запросы по QNET к сервисам, работающим на одном сетевом узле, со стороны клиентских приложений, работающих на других. Например, ежедневно выполняя простейшую команду:
# cp /net/host/dev/ser1 ./file
часто ли мы задумываемся над тем, кого и в каком порядке будет вытеснять код, выполняющий копирование файлов.
Для текущей выполняющейся задачи такой удаленный запрос из сети QNET является скрытым источником параллелизма, а благодаря наследованию приоритетов даже удаленный запрос по сети может привести к немедленному вытеснению локальной задачи, выполняющейся до получения запроса.
Приведенная выше аргументация — это далеко не полный перечень причин, по которым стоит еще пристальнее и с большей заинтересованностью взглянуть на техники параллельной организации вычислительного процесса. В литературе неоднократно отмечалось (например, [11]), что даже в тех случаях, когда приложение заведомо никогда и нигде не будет использоваться на многопроцессорной платформе, более того, когда логика приложения не предполагает естественного параллелизма как «одновременности выполнения», — даже тогда расщепление крупного приложения на логические фрагменты, которые построены как параллельные участки кода, взаимодействующие в ограниченном числе точек контакта, — это путь построения «прозрачного» для написания и понятного для сопровождения программного кода. И как следствие, этот путь (иногда на первый взгляд кажущийся несколько искусственным и привнесенным) — путь построения приложений высокой надежности, свободных от ошибок, характерных для громоздких монолитных приложений, и простых в своем последующем развитии и сопровождении.
Как уже неоднократно отмечалось, параллельная техника выражения в программном коде, пусть даже принципиально последовательных процессов, сопряжена с определенными трудностями: необходимость отличного, «параллельного», взгляда на описываемые процессы и отсутствие привычки применять специфические разделы API, редко используемые в классическом «последовательном» программировании. Единожды освоив эту технику, применять ее в дальнейшем становится легко и просто. Возможно и большее число рутинных приемов использования параллельной техники — в своей книге мы постарались «рассыпать» по тексту множество программных иллюстраций.
Наконец, есть еще одна, последняя особенность предлагаемого вашему вниманию материала: значительная часть приводимых здесь примеров и описаний относится ко всему многообразию ОС, поддерживающих POSIX-стандарт, однако акцент делается на не совсем очевидные особенности построения так называемых «приложений реального времени» [4]. В первую очередь это касается принципов синхронизации задач, совместно использующих общий ресурс. К сожалению, приемы программирования, широко распространенные при параллельном выполнении задач общего назначения, могут привести к не совсем предсказуемым результатам (по времени реакции) при построении систем реального времени. Особенности построения параллельно исполняемых систем в сферах реального времени и стали тем ключевым моментом, ориентируясь на который мы строили этот текст.
Общее множество вызовов API (Application Program Interface — интегральное наименование всего множества вызовов из программной среды к услугам операционной системы), реализуемое операционной системой (ОС) реального времени QNX, естественным образом разделяется на три независимых подгруппы:
• Native QNX API — это самодостаточный набор вызовов, развиваемый со времен ранних версий QNX (когда вопрос о совместимости с POSIX еще не стоял); является естественным базисом этой системы, отображающим «микроядерность» ее архитектуры, но по соображениям возможной совместимости и переносимости он является также и исключительной принадлежностью этой ОС.
• POSIX (BSD) API — это уровень API, регламентируемый постоянно расширяющейся системой стандартов группы POSIX, которым должны следовать все ОС, претендующие на принадлежность к семейству UNIX.
• System V API (POSIX) — это та часть API, которая заимствует модели, принятые в UNIX-ax, относящихся к ветви развития System V, а не к ветви BSD.
Именно этот слой является базовым слоем, реализующим функциональность самой системы QNX. Два последующих слоя в значительной мере являются лишь «обертками», которые ретранслируются в вызовы native QNX API после выполнения реструктуризации или перегруппировки аргументов вызова в соответствии с синтаксисом, требуемым этим вызовом.