Есть ли что-то такое в науке, верой во что вы гордитесь, но до сих пор не применяете вашу веру на практике? Вам лучше спросить себя сейчас, какие возможные варианты будущего ваша вера запрещает. Эта проверка покажет, что вы усвоили на самом деле, что вы сделали частью своей личности. Всё остальное — скорее всего, лишь пароли или одеяния.
Лжепричинность
Элиезер Юдковский
Флогистон — это ответ Европы XVIII века на первоэлемент огня, введённый греческими алхимиками. Зажги древесину и позволь ей сгореть. Что представляет из себя эта яркая оранжевая штука? Почему древесина превратилась в пепел? На оба эти вопроса химики XVIII века отвечали — «флогистон».
…и больше ничего. Это всё, в этом и заключался их ответ: «флогистон».
Флогистон покидал горящие вещества как видимое пламя. В результате горящие вещества теряли свой флогистон и становились пеплом, своим «истинным материалом». Огонь, помещённый в герметичный сосуд, быстро гас потому, что воздух насыщался флогистоном и больше не мог его вместить. Уголь почти не оставлял никакого пепла, потому что он почти полностью состоял из флогистона.
Разумеется, никто не использовал теорию флогистона для того, чтобы предсказатьрезультат химического превращения. Алхимик сначала смотрел на результат, а затем при помощи флогистона объяснял его. Не было и намёка на то, чтобы флогистонщики предсказали прекращение горения в замкнутом сосуде; они, скорее, зажгли огонь в сосуде, увидели его угасание и затем сказали: «Должно быть, воздух насытился флогистоном». Теорию флогистона нельзя применить для того, чтобы выяснить, чего ты точно не сможешь увидеть. Она может объяснить всё.
Наука ещё только начинала выходить на сцену. Очень долго никто не осознавал, что в этой теории что-то не так.
Встретив лжеобъяснение, очень легко не ощутить его фальшивость: потому они и опасны.
Современные специалисты предполагают, что люди думают о причино-следственных связях, используя нечто вроде направленных ациклических графов или байесовских сетей. Поскольку шел дождь, тротуар мокрый; поскольку тротуар мокрый, он скользкий:
[Дождь] -> [Тротуар мокрый] -> [Тротуар скользкий]
Из этого можно вывести (а, имея байесовскую сеть, можно даже точно вычислить эту вероятность), что, если тротуар скользкий, то, вероятно, шёл дождь. Однако, если уже известно о мокрости тротуара, то сообщение о его скользкости не несёт в себе никакой новой информации о дожде.
Почему огонь горячий и яркий?
[«Флогистон»] -> [Огонь горячий и яркий]
Это выглядит как объяснение. И в мозгу эта информация хранится в том же формате и под тем же расширением, что и «настоящие» объяснения. Но человеческий разум неспособен автоматически определить, что стрелка, соединяющая гипотезу с её возможными следствиями, никак не ограничивает пути, которыми могут проявляться эти следствия. Эффект знания задним числом делает ситуацию ещё хуже: люди могут считать, что гипотеза действительно ограничивает происходящее, хотя на самом деле гипотеза подогнана под происходящее постфактум.
Современная трактовка вероятностных рассуждений о причинности может точно описать, в чём именно состояла ошибка флогистонщиков. Байесовские сети были разработаны для того, чтобы, кроме всего прочего, не учитывать свидетельства дважды в том случае, когда логический вывод между причиной и следствием возможен в обе стороны. Например, я добыл кусочек ненадёжной информации о том, что тротуар мокрый. Это заставляет меня подумать: «возможно, идёт дождь». Но если идёт дождь, то утверждение «тротуар мокрый» стало более правдоподобным, так? То же самое ведь касается и скользкости тротуара, верно? Но если тротуар скользкий, то он, скорее всего, мокрый — и тогда нужно опять повысить вероятность того, что идёт дождь.
Джуда Перл приводит в качестве метафоры алгоритм подсчёта солдат в линии. Представьте, что вы стоите в линии и видите рядом только двух солдат: одного спереди и одного сзади. Всего трое солдат. Вы спрашиваете своего соседа: «Сколько солдат ты видишь?» Он оглядывается и говорит: «Троих». Получается, всего солдат шесть. Очевидно, что так решать эту задачу не стоит.