Рис. 214. В системе SECAM сигнал последовательно переключается на R (красный) или на В (синий).
Н. — Я предполагаю, что линия задержки сделана из очень длинного проводника электричества: он должен быть настолько длинным, чтобы сигналы затрачивали на прохождение по нему 64 мкс.
Л. — В этом случае потребовался бы изолированный провод длиной около 20 км. Однако используемая в телевизорах линия задержки имеет длину всего лишь 20 см. Из сказанного ты должен сделать вывод, что по иен проходят не электрические сигналы, а нечто другое.
Н. — Могу ли я предположить, что здесь мы имеем дело со звуковыми волнами?
Л. — Точнее, здесь используется ультразвук. Сигналы с частотой, изменяющейся от нуля до 1,5 МГц, порождают на входе линии задержки соответствующие механические колебания, которые на прохождение затрачивают 64 мкс. Затем они вновь преобразуются в электрические сигналы.
Н. — Позволь задать тебе два вопроса: из чего состоит эта линия задержки, по которой проходят колебания, и как осуществляется преобразование электрических колебаний в механические и наоборот.
Л. — Линия задержки представляет собой стальной или стеклянный стержень (рис. 215).
Рис. 215. Схематическое изображение линии задержки: на входе электрические сигналы преобразуются пьезоэлектрическим кристаллом в механические колебания, а на выходе с помощью другого кристалла вновь восстанавливаются электрические сигналы.
Что же касается электромеханического преобразования, то оно основано на явлении пьезоэлектричества. В некоторых кристаллах, как, например, кварц или титант свинца, возникают колебания, если к ним приложить изменяющиеся электрические напряжения. И наоборот, если их заставить колебаться, то на их поверхностях появляются соответствующие электрические напряжения.
Н. — Я понимаю, что в линии задержки к каждому концу стального стержня прикреплен пьезоэлектрический кристалл. Установленный на входе кристалл преобразует электрические сигналы в механические колебания. Эти колебания распространяются вдоль стержня и через 64 мкс достигают второго пьезоэлектрического кристалла, где порождают электрические сигналы такой же формы, какие были приложены на вход.
Л. — Поздравляю тебя, Незнайкин, с тем, что ты без задержки догадался, как работает эта линия. Теперь ты знаешь основные принципы цветного телевидения. На практике устройство передатчиков и телевизоров намного сложнее. Но я не хочу вдаваться в детали конструкции и подробности работы этой аппаратуры. Если это тебя интересует, ты узнаешь все необходимое, прочитав специальные книги.
Комментарий профессора Радиоля
ЗАПИСЬ И ВОСПРОИЗВЕДЕНИЕ ЗВУКА И ИЗОБРАЖЕНИЯ
С помощью электроники можно преобразовать звуковые или световые волны в электрические колебания. Это позволяет записать их. Благодаря обратным преобразованиям можно воспроизвести заложенные таким образом на хранение звуки и изображение. Ниже описываются различные способы записи и воспроизведения.
До сих пор мы изучали лишь способы передачи звуков и изображения в трехмерном пространстве. Благодаря радио и телевидению мы можем слышать и видеть происходящее далеко от нас, в том числе и других городах и странах, на других континентах и даже на небесных телах. Но звуки и изображения могут также передаваться и в четвертом измерении — во времени. Любопытно отметить, что еще задолго до появления электроники человечество решило проблему передачи изображений во времени, когда удалось сделать первые фотографии.
В наши дни существует несколько способов записи и воспроизведения звуков. Каждый из них основан на преобразовании электрических колебаний в колебания иного рода, которые могут легко сохраняться и вновь преобразовываться в электрические.
Какие основные виды преобразований используют? Механическое, оптическое и магнитное. Ты прекрасно осведомлен, Незнайкин, как легко электрические колебания преобразуют в механические. На этом принципе основаны громкоговорители.
Теперь мы займемся рассмотрением трех видов записи и воспроизведения звука