Выбрать главу

Я только что объяснил тебе, как, создавая изменяющееся магнитное поле, ток первичной обмотки наводит переменный ток во вторичной обмотке. Но кроме вторичной обмотки в этом изменяющемся магнитном поле находится еще одна катушка — сама первичная обмотка! Поэтому я надеюсь, что ты не удивишься, узнав, что первичная обмотка наводит ток не только в своей соседке — вторичной обмотке, но и в себе самой.

Явление самоиндукции вызывает увеличение сопротивления катушки; это происходит, потому что полупериоды наводимого переменного тока не совпадают с полупериодами индуктирующего тока: наведенный ток оказывается смещенным или, как говорят, сдвинутым по фазе. Именно это определяет сопротивление, которое называется индуктивным. Оно пропорционально частоте тока и индуктивности катушки. Эта последняя характеристика зависит исключительно от геометрических особенностей катушки: от количества и диаметра витков и от их взаимного расположения. Чем больше витков, чем больше их размеры и чем плотнее они расположены друг к другу, тем сильнее создающее ток магнитное поле воздействует на саму катушку и тем, следовательно, выше индуктивность.

Индуктивность пропорциональна квадрату числа витков. Удвой количество витков, и индуктивность увеличится в 4 раза.

Индуктивность измеряется в генри; принятое сокращенное название этой единицы Г. Следовательно, индуктивное сопротивление XL (выражаемое, как и активное сопротивление, в омах) пропорционально произведению частоты f на индуктивность L. Эта зависимость выражается формулой

XL = 2π·f·L,

где π = 3,14, как ты знаешь, численное выражение отношения окружности к диаметру.

Устройство гальванометра

Поскольку мы изучаем различные аспекты электричества, тесно связанные с магнетизмом, я позволю себе еще раз вернуться к использованию устройства, состоящего из магнита, между полюсами которого установлена катушка; последняя укреплена на оси и свободно вращается.

Мы уже видели, что при вращении катушки в ней возникает переменный ток; в этом случае наше устройство выступает в роли генератора переменного тока. Если мы, наоборот, пропустим через катушку переменный ток, то она начнет вращаться. Так работает электрический двигатель.

А теперь предположим, что эта катушка подвешена на эластичной проволочке и укреплена на оси с двумя точками опоры: одна сзади, а другая спереди. В этих условиях катушка уже не может совершить, несколько оборотов, так как это привело бы к чрезмерному скручиванию проволочки-подвески. Следовательно, это уже не двигатель. Но предположим, что мы пропускаем через катушку постоянный ток. Намагниченная таким образом катушка стремится повернуться. В зависимости от эластичности проволочки-подвески и, что самое главное, в зависимости от силы тока угол поворота катушки будет больше или меньше.

Теперь ты, несомненно, догадываешься, что это превосходное средство для измерения силы тока. Для этой цели на оси катушки укрепляют стрелку, а позади стрелки устанавливают шкалу с соответствующими делениями. Таким образом, мы построили гальванометр (рис. 19). Если его шкала отградуирована в амперах, то это амперметр. Прибор для измерения малых токов называется миллиамперметром или микроамперметром.

Рис. 19. В гальванометре катушка, по которой протекает измеряемый ток, расположена в поле электромагнита; она может вращаться вокруг горизонтальной оси.

Измерительные приборы

Таким образом можно сделать и прибор для измерения напряжения. Для этой цели последовательно с катушкой включают резистор R. При подключении такого прибора к двум точкам цепи, между которыми надлежит измерить напряжение, через наш гальванометр протекает ток, величина которого по закону Ома равна частному от деления напряжения на сумму омических сопротивлении резистора R и катушки. Шкала в этом случае отградуирована непосредственно в вольтах, милливольтах или микровольтах; в зависимости от единицы измерения мы получим вольтметр, милливольтметр или микровольтметр.

Гальванометр позволяет также измерять величину переменного тока и переменного напряжения (рис. 20).

Рис. 20. Схемы вольтметров, измеряющих постоянное (а) и переменное (б) напряжения.