Л. — Ты ошибаешься, говоря об отсутствии антенны. В твоем приемнике имеется превосходная антенна. Но это не наружная, а рамочная антенна.
Н. — До сих пор я знал только рамки у картин… Что же это за рамка, которая принимает волны?
Л. — Это просто катушка, в которой переменные магнитные поля радиоволн наводят токи (рис. 56).
Рис. 56. Рамочная антенна для приема электромагнитных волн.
Раньше пользовались рамочными антеннами, расположенными вне ящика, содержащего электрические блоки приемника. Рамочную антенну делали из нескольких витков проволоки, намотанных на соединенные крестообразно две деревянные рамки. Таким образом получали катушку квадратной формы. Одна из двух рамок устанавливалась вертикально и служила осью вращения, позволяющей ориентировать катушку в любом направлении.
Электромагнитные волны, как говорит само их название, одновременно имеют электрические и магнитные силовые линии.
Н. — Я даже думаю, что они взаимно перпендикулярны. Электрические силовые линии направлены вдоль распространения волн (рис. 57). Они образуют своеобразные радиусы окружностей, которые образуют магнитные силовые линии. Можно сказать, что радиус окружности перпендикулярен участку окружности, которого он касается.
Рис. 57. Направление электрических и магнитных силовых линий. Передающая антенна находится в центре. Электрические силовые линии показаны стрелками, а магнитные силовые линии — пунктирными окружностями.
Л. — Учитель геометрии поправил бы тебя, сказав, что радиус перпендикулярен касательной, проходящей через данную точку окружности. Но то, что ты сказал, верно. Теперь ты легко можешь понять, что для того чтобы магнитные силовые линии радиоволн навели токи в катушке рамочной антенны, необходимо, чтобы ее ось совпадала с направлением этих силовых линий. А так как они направлены перпендикулярно направлению на передатчик, нужно плоскость витков рамочной антенны сориентировать в этом направлении. Следовательно, для приема того или иного передатчика нужно сориентировать на него рамочную антенну. Это явление, позволяющее точно определить, откуда приходят волны, легло в основу радиопеленгации.
Ты знаешь, какую пользу приносит этот метод в морской и воздушной навигации? С помощью двух радиопеленгаторов, расположенных достаточно далеко друг от друга, точно определяют направление на излучающий радиоволны корабль или самолет (рис. 58). Затем, вычертив на карте соответствующие прямые, легко устанавливают место, где этот корабль или самолет находится. Движущийся объект находится в точке пересечения этих линий.
Рис. 58. Сориентировав две рамочные антенны на передатчик, определяют его местонахождение (а), а направив рамочную антенну на два передатчика, определяют местонахождение приемника (б).
Н. — Скажи, пожалуйста, а нельзя ли поступить наоборот: с корабля или самолета определить направления на два стационарных передатчика, местонахождение которых точно известно?
Л. — Такой метод радиопеленгации действительно применяется. Однако в наши дни радиопеленгаторы постепенно исчезают: их очень удачно заменяют радиолокаторы, о которых я тебе расскажу позднее.
Н. — Но вернемся к вопросу, который я задал тебе в начале нашей беседы. Должен ли я предположить, что внутри футляра моего портативного приемника имеется рамочная антенна?
Л. — Это не вызывает сомнения, но используемая в твоем приемнике рамочная антенна представляет собой катушку на ферритовом сердечнике.
Н. — Что ты так называешь?
Л. — Это магнитный сердечник с высокой проницаемостью, сделанный в виде стержня и состоящий из ферромагнитных окислов, крупинки которых изолированы друг от друга.
Н. — Зачем?
Л. — Чтобы до минимума уменьшить токи Фуко, т. е. токи, которые переменное магнитное поле катушки наводит в любом помещенном в него проводнике. Благодаря изоляции магнитных зерен активное сопротивление магнитного сердечника так велико, что его практически можно рассматривать как диэлектрик. В результате токи Фуко равны нулю и наша катушка, служащая внутренней антенной, не растрачивает энергию понапрасну. Такие антенны носят название ферритовых или магнитных.