Можно вычертить целое семейство таких кривых, каждая из которых будет соответствовать определенному значению потенциала анода Uа. Как ты видишь, чем выше этот потенциал, тем раньше начинает протекать ток (рис. 68).
Рис. 68. Семейство характеристик, каждая из которых получена при определенной величине анодного напряжения Uа.
В самом деле, когда сетка более отрицательна, она сильнее препятствует прохождению электронов, но если потенциал анода увеличился, его притяжение позволяет нейтрализовать противодействие сетки и пропустить ток. На значительной части своей длины кривые имеют прямолинейные отрезки, параллельные между собой. Это означает, что при любом значении анодного потенциала крутизна остается постоянной. И, наконец, все кривые имеют горизонтальный участок, соответствующий, как ты, несомненно, догадался, режиму насыщения. По этим кривым можно легко определить крутизну. Достаточно посмотреть, какая разность анодного тока соответствует двум точкам кривой, разнесенным по горизонтали на 1 В.
По семейству кривых, снятых с помощью схемы рис. 69, можно также найти коэффициент усиления.
Рис. 69. Схема, позволяющая снимать характеристики триода.
Для этого определяют значения анодного тока в точках С и D (рис. 70), соответствующие точкам А и В, которые при одной и той же величине сеточного потенциала Uс располагаются на кривых, проведенных для двух различных анодных потенциалов Ua1 и Ua2. Затем по одной кривой, например для Ua2, определяют, что такое же изменение анодного тока можно получить за счет изменения потенциала сетки с точки Е до точки F. Теперь для получения коэффициента усиления достаточно разделить разность Ua2 — Ua1 на разность сеточных потенциалов.
Рис. 70. По двум характеристикам, снятым при анодных напряжениях Ua1 и Ua2, определяют коэффициент усиления триода. Он равен разности Ua2 — Ua1, разделенной на разность напряжений, соответствующих точкам E и F.
Мне остается познакомить тебя с третьим основным параметром — внутренним сопротивлением триода. Так называют отношение между изменениями потенциала анода ΔUа и вызываемыми ими изменениями анодного тока ΔIа. Внутреннее сопротивление обозначается Ri. Следовательно,
По вычерченным мною кривым очень легко рассчитать величину Ri. Так, на одной вертикали (следовательно, при одном и том же значении сеточного потенциала) мы находим точки А и В, которые соответствуют значениям тока С и D. Разделим разность анодных потенциалов Ua1 — Ua2 на разность соответствующих им значений токов и получим величину внутреннего сопротивления. У триода внутреннее сопротивление составляет несколько тысяч или даже десятков тысяч ом.
Я позволю себе напомнить тебе формулы трех характеристики триода, а именно: коэффициента усилений μ, крутизны S и внутреннего сопротивления Ri:
Перемножим две последние формулы:
Как ты видишь, коэффициент усиления равен произведению крутизны на внутреннее сопротивление.
Я догадываюсь, что, слушая меня, дорогой Незнайкин, ты сейчас испытываешь определенное нетерпение. Ты спрашиваешь себя, зачем понадобилось изучать поведение триода, если тебе не объяснили, как его можно использовать. Так вот, теперь мы можем свободно приступить к этому вопросу.
Сначала рассмотрим использование триода для усиления. Для этого переменное напряжение Uвх, которое нужно усилить, прилагается на вход лампы, т. е. между сеткой и катодом. Ты, разумеется, догадываешься почему так поступают. Ведь малые изменения напряжения между двумя этими электродами вызывают большие изменения анодного тока. А изменения последнего дают нам выходное напряжение. Для этого анодный ток пропускают через нагрузку Z, на которой возникает выходное напряжение Uвых.