Ты видишь, что наложение двух переменных токов порождает ток, частота которого равна разности частот этих двух токов. Если это два тока ВЧ, частоты которых мало различаются между собой, то их наложение дает ток НЧ. Тогда говорят об интерференции или о биениях. Можно также накладывать токи, частоты которых значительно отличаются. Именно так делают при радиотелефонной передаче.
Сначала генерируют колебания ВЧ с помощью одного из рассмотренных нами способов, в которых обратная связь порождает такие колебания. Затем их усиливают и модулируют токами НЧ, полученными в результате усиления микрофонных токов. Как осуществляется эта модуляция?
Это можно сделать посредством одновременной подачи на сетку лампы двух напряжений: ВЧ и НЧ. Сетка в этом случае должна получить такое смещение, чтобы рабочая точка находилась у подножья характеристики (см. рис. 78). Тогда во время отрицательных полу периодов НЧ анодного тока не будет, а во время положительных полупериодов НЧ приложенное на сетку напряжение ВЧ создаст анодный ток, амплитуда которого в каждый момент времени будет пропорциональна напряжению НЧ. Таким образом получают токи ВЧ, модулированные по амплитуде сигналами НЧ.
Я не хочу утомлять тебя тригонометрическими расчетами сложения синусоидальных кривых ВЧ и НЧ. Просто запомни, что при модулировании по амплитуде несущего высокочастотного тока с частотой/током низкой частоты F возникает ток, имеющий две частоты: f — F и f + F.
Например, если ток ВЧ с частотой 1000000 Гц модулируется током НЧ с частотой 3000 Гц, в результате получается модулированный ток с частотами 997 000 и 1003 000 Гц (рис. 91).
Рис. 91. Колебания с несущей частотой 1 000 000 Гц модулируются НЧ с частотой 3000 Гц.
В радиотелефонии полоса звуковых частот ограничена 4500 Гц. Ширина каждой из модулированных боковых полос, расположенных по обе стороны от несущей частоты, равна 4500 Гц. А спектр частот, который занимает радиотелефонный передатчик, следовательно, составляет 9000 Гц. Поэтому международное разделение несущих частот предусматривает выделение интервалов шириной 9 кГц во избежание одновременного приема двух передач и появления интерференционных свистов.
Для завершения описания устройства передатчика я добавлю, что, прежде, чем подать в передающую антенну, которая порождает электромагнитные волны, модулированные токи, их следует усилить по мощности (рис. 92).
Рис. 92. Структурная схема радиотелефонного передатчика с амплитудной модуляцией.
Вернемся к рассмотрению обратной связи. До тех пор, пока мы ею управляем, все идет хорошо. Она позволяет повысить усиление или, если это нужно, генерировать колебания.
К сожалению, обратная связь может возникать самопроизвольно, что нередко имеет пагубные последствия. Катушка, по которой протекает анодный ток, может, помимо нашего желания, наводить напряжение в катушке, соединенной с сеткой, и вызвать тем самым появление колебаний. Это явление называют самовозбуждением.
Самовозбуждение может возникнуть также при наличии емкости между компонентами во входной и выходной цепях лампы.
Для предотвращения возникновения связей между магнитными или электрическими полями применяют экраны. Так называют металлические пластины или коробочки, являющиеся препятствием для распространения силовых линий. Распространение магнитных полей низкочастотных катушек и трансформаторов ограничивают стальными экранами. На ВЧ применяют преимущественно экраны из меди.
Однако имеется еще одна емкость, способная вызвать особенно опасную обратную связь. Это емкость между анодом и сеткой триода. Подумай о том, что положительный потенциал на сетке вызывает увеличение анодного тока. Поэтому падение напряжения на нагрузке, включенной в анодную цепь, увеличивается. В результате через емкость анод — сетка часть электронов попадет обратно на сетку, создав на ней еще более высокий положительный потенциал. Работа лампы станет неустойчивой, и может возникнуть самовозбуждение.
Здесь, как ты видишь, мы сталкиваемся с паразитной обратной связью. Как с ней бороться?
И в этом случае можно воспользоваться экраном. Нет, Незнайкин, не думай, что я смеюсь над тобой. Экран, о котором я сейчас говорю, представляет собой сетку со строго фиксированным потенциалом. Ее размещают между управляющей сеткой и анодом. Так получили четырехэлектродную лампу, потому что помимо катода, управляющей сетки и анода в ней имеется экранирующая сетка. Поэтому лампу называют тетродом (от греческого слова «тетра» — четыре).