Выбрать главу

Рис. 127. Притягивая электроны от эмиттера к базе, напряжение источника Eэ. б открывает им путь в коллектор.

Л. — Что же произойдет?

Н. — Напряжение между эмиттером и базой и в этом случае приложено в проводящем направлении. Значит, свободные электроны устремятся от эмиттера к базе. Некоторые из них пойдут к положительному полюсу источника питания, пройдут через него и вернутся к эмиттеру. Они определяют ток базы. Но и здесь он будет малым. Вследствие исключительно малой толщины базы основная часть электронов, устремляющихся от эмиттера в базу, преодолеет и второй переход; это облегчается тем, что они притягиваются положительным потенциалом, приложенным к коллектору. Они войдут в коллектор, покинут его и направятся к положительному полюсу батареи Еэ. к, чтобы, пройдя через нее, вернуться, наконец, к эмиттеру.

Л. — Браво, Незнайкин! Ты мог бы еще добавить, что в это же время положительные дырки, которые до приложения напряжения находились в середине базы, устремятся к эмиттеру, притягиваемые его отрицательным потенциалом.

Аналогия транзистор — триод

Н. — Как изменяется ток коллектора в зависимости от изменения тока базы?

Л. — Можно сказать, что Iк практически пропорционален Iб. Кривая, которую я тебе показываю, представляет собой почти прямую линию (рис. 128).

Рис. 128. Кривая напряжения тока коллектора Iк в зависимости от изменения тока базы Iб.

Как видишь, когда ток базы увеличивается на 100 мкА, ток коллектора возрастает на 3 мА, т. е. в 30 раз больше. Однако еще большее впечатление производят кривые, показывающие изменение тока коллектора Iк в зависимости от изменения напряжения эмиттер — база Uэ. б (рис. 129).

Рис. 129. Изменение тока коллектора Iк в зависимости от изменения напряжения Uэ. б, приложенного между эмиттером и базой.

На кривой, которую я для тебя начертил, видно, что, когда напряжение Uэ. к увеличивается со 100 до 150 мВ, ток Iк повышается с 4 до 10 мА. Иначе говоря, при изменении напряжения базы на 50 мВ ток возрастает на 6 мА.

Н. — Для расчета крутизны надо 6 мА разделить на 50 мВ, или 1/20 В; получим 120 мА/В — это просто колоссально!

Л. — Не очень, так как имеются транзисторы с крутизной 300 мА/В и даже больше.

Н. — Что меня сейчас больше всего поражает, так это глубокая аналогия между транзистором и лампой-триодом. Эмиттер соответствует катоду, сетка — базе, а коллектор — аноду.

Л. — Действительно, если в лампе малые изменения потенциала сетки вызывают значительные изменения анодного тока, то и здесь, немного изменяя потенциал базы, можно сильно изменять ток коллектора.

Ты догадываешься, что вход транзистора образуется базой и эмиттером. Между этими двумя электродами прилагают подлежащие усилению переменные токи. Выход же транзистора образуется между коллектором и эмиттером, так как между ними протекает усиленный ток.

Условные обозначения

Н. — Не мог бы ты показать мне схему усилительного каскада на транзисторе? Прежде покажи условное графическое обозначение транзистора.

Л. — В связи с существованием двух типов транзисторов должно быть и два условных обозначения. База изображается вертикальной линией; эмиттер обозначается в виде стрелки, направленной к базе в транзисторе типа р-n-р и направленной от базы в транзисторе типа n-р-n (рис. 130).

Рис. 130. Условные графические обозначения транзисторов.

Н. — Эта стрелка, если я правильно понимаю, показывает условное направление электрического тока, т. е. от положительного полюса к отрицательному.

Л. — Совершенно верно. Коллектор же обозначается прямой линией, подходящей, как и стрелка эмиттера, к базе. Принятое условное обозначение верно отражает историческую действительность. Самые первые транзисторы, сделанные в 1948 г., не имели настоящих переходов. Эмиттер и коллектор этих транзисторов представляли собой металлические острия, опиравшиеся на кристалл германия (базу).