Рис. 195. Конструкция суперортикона. В кружках показаны потенциалы на различных электродах.
Как ты догадываешься, эта мишень эффективно притягивает все электроны, исходящие с фотоэмиттирующего катода. Бомбардировка притягиваемыми таким образом электронами вызывает интенсивный вылет вторичных электронов, которые тут же улавливаются очень тонкой сеткой, установленной между фотокатодом и мишенью на расстоянии сотых долей миллиметра.
В результате вылета вторичных электронов на мишени создаются положительные заряды, величина которых тем больше, чем сильнее освещены соответствующие элементы фотокатода. Эти заряды проходят сквозь тонкую мишень и нейтрализуются электронами перемещающегося луча, направляемого на мишень электронной пушкой.
Самое важное заключается в том, что, достигая мишени, эти электроны не вызывают эмиссии вторичных электронов. Электрод, расположенный около мишени и имеющий небольшой потенциал, ведет себя как настоящий тормоз, замедляющий движение электронов. Поэтому они лишь легонько ударяют по мишени, что предотвращает появление вторичных электронов. Часть электронов остается на мишени и нейтрализует ее положительно заряженные элементы. Остальные возвращаются к электронной пушке, притягиваемые большими положительными потенциалами ее анодов.
Подумав, ты легко придешь к заключению, что интенсивность возвращающегося электронного луча обратно пропорциональна яркости соответствующих элементов изображения. Ведь мы уже отметили, что чем ярче элемент, тем больше положительный заряд соответствующей ему точки на мишени; поэтому он больше поглощает электронов из приходящего луча и, следовательно, меньше их остается в возвращающемся луче.
А что делается с этими электронами, которые достигают анода пушки? Здесь происходит необычный процесс усиления, выполняемый электронным умножителем (рис. 196).
Рис. 196. Электронный умножитель, содержащий пять анодов с последовательно возрастающими потенциалами.
Что это такое? Это устройство, основанное на использовании явления вторичной эмиссии. Целая цепочка электродов, обладающих все возрастающим положительным потенциалом, последовательно притягивает электроны. Вылетевший с первого электрода электрон попадает на второй и выбивает, скажем, пять новых электронов. Бомбардируя третий электрод, каждый из этих электронов выбивает по пять других, в результате чего их общее количество вырастает до 25, и т. д.
Как видишь, Незнайкин, это явление приносит здесь большую пользу, во многих других случаях оно приносит много вреда. Благодаря большому усилению, обеспечиваемому электронным умножителем, суперортикон обладает очень хорошей чувствительностью. Однако его применение для передачи очень ярких изображений не дает достаточно хороших результатов, так как количество излучаемых мишенью вторичных электронов оказывается слишком большим и сетка не может их все перехватить. Некоторая часть этих электронов вновь падает на мишень, что вносит искажения в выдаваемые трубкой видеосигналы. По этой причине в современных моделях передающих телевизионных трубок чаще используют эффект фотопроводимости, нежели фотоэмиссии.
Одной из наиболее широко используемых передающих телевизионных трубок стал видикон (рис. 197).
Рис. 197. Передающая телевизионная трубка — видикон.
Изображение здесь проецируется на металлическую пластинку, причем настолько тонкую, что она просвечивается. Да, Незнайкин, металлическая пластинка пропускает световые лучи к фотопроводящему слою, покрывающему ее обратную сторону. Этот слой, состоящий из селена или сульфида сурьмы, обладает проводимостью, пропорциональной интенсивности падающего на него света.
На мишень такой конструкции подают положительный потенциал, на несколько десятков вольт превышающий потенциал катода электронной пушки. Электронный луч фокусируется одновременно несколькими анодами и магнитным полем, расположенным вокруг трубки катушки, которую я на своем рисунке не изобразил. Катушки, обеспечивающие отклонение электронного луча, я также не нарисовал.