Постоянство частоты колебаний во времени называется ее стабильностью. Из нашего примера видно, что частоты колебаний, создаваемых музыкальными инструментами, должны быть очень стабильными. Но еще большие требования к стабильности частоты предъявляются при радиопередаче. Если частота радиопередатчика понемногу изменяется, то приемник приходится все время подстраивать. Кроме того, при плохой стабильности волны различных радиостанций могут «наезжать» друг на друга, создавая взаимные помехи.
В первые годы развития радио так оно и было. Но с течением времени радиопередатчики непрерывно совершенствовались. Искровые передатчики, применявшиеся еще А. С. Поповым, отошли в прошлое. На смену им появились «дуговые», в которых электрические колебания создавались не прерывистой искрой, а постоянно горящей электрической дугой. Дуговые радиопередатчики просуществовали недолго. Их сменили электрические машины, подобные тем, которые применяются для создания переменного тока в осветительных сетях. Однако и машинные передатчики были вынуждены уступить место так называемым ламповым генераторам (слово генератор происходит от слова генерировать, т. е. возбуждать, создавать). Ламповые генераторы применяются и поныне.
Современный передатчик — чрезвычайно сложное устройство. Но понять, как он работает, нетрудно, если предварительно познакомиться с работой одного гораздо более простого прибора, который имеет с ним ряд общих черт. Этот прибор — обыкновенные стенные часы.
Качните маятник незаведенных часов. Он начнет колебаться, однако размах его колебаний будет постепенно уменьшаться, пока, наконец, маятник не остановится. Такие колебания называют затухающими. Их затухание происходит вследствие различных потерь энергии: из-за трения маятника в опорах, сопротивления воздуха и т. д.
Чтобы колебания не затухали, необходимо все время восполнять потери энергии. В часовом механизме для этого служит пружина или гири. Заводя пружину, вы совершаете какую-то работу, расходуете определенную энергию. Эта энергия накапливается в пружине.
Пружина — упругое тело. Она стремится раскрутиться и принять первоначальную форму. Та сила, с которой раскручивается пружина, передается системе зубчатых колес, а от них — маятнику. Маятник, получая толчки в такт своим колебаниям, колеблется с одинаковым размахом, пока пружина не раскрутится настолько, что перестанет восполнять потери энергии при колебаниях.
Колебания, происходящие с одинаковым размахом, называют незатухающими.
Таким образом, часы состоят из трех основных частей. Одна из них — маятник — предназначена для создания колебаний определенной частоты (частота колебаний маятника зависит от его длины). Вторая часть — пружина — служит источником энергии, восполняющим потери в маятнике. Третья — зубчатый механизм — передает энергию от пружины к маятнику.
В часах происходит переход энергии, накопленной пружиной, в энергию колебаний маятника. Нечто подобное наблюдается и в радиопередатчике. Там происходит преобразование энергии постоянного тока, накопленной источником электричества, в энергию электрических колебаний. Роль маятника в современном передатчике играет колебательный контур, роль пружины — источник постоянного тока и, наконец, роль зубчатого механизма — электронная лампа.
Посмотрим, как работают эти основные части радиопередатчика.
ЭЛЕКТРИЧЕСКИЙ МАЯТНИК
Колебательный контур состоит из двух деталей — катушки индуктивности и конденсатора.
Катушка индуктивности — это проволочная спираль, обычно намотанная на основание из какого-либо материала, не проводящего электрический ток.
Простейший конденсатор представляет собой две плоские металлические пластины, расположенные параллельно на небольшом расстоянии друг от друга.
Внешний вид и схема колебательного контура показаны на рис. 6.
Рис. 6. Внешний вид и схема колебательного контура.
Прежде чем рассмотреть работу «электрического маятника», познакомимся с действием его частей — катушки индуктивности и конденсатора.
В повседневной жизни нам часто приходится сталкиваться с явлением инерции. Под словом «инерция» подразумевают свойство тел сохранять состояние покоя или равномерного прямолинейного движения. Часто можно наблюдать, как движется автомобиль или трамвай с выключенным мотором, как едет велосипедист, не вращая педалей. Такое движение обусловлено инерцией.
Чтобы сдвинуть с места тяжело груженный вагон, нужно приложить большую силу. Как только вагон тронулся, двигать его становится гораздо легче. Чтобы затормозить движение такого вагона, вам снова придется приложить очень большую силу. Это еще пример инерции.