Впервые, как уже было рассказано выше, этот сигнал атомов — радиоактивное излучение — был принят и зарегистрирован Анри Беккерелем при исследовании соединений элемента урана. Этим же воспользовались и Мария и Пьер Кюри при поисках радия и полония. Излучение радия и полония являлось, следовательно, природной меткой, по которой супруги Кюри обнаружили и выделили эти элементы.
Описанные примеры показывают, что радиоактивное излучение может служить для атомов меткой, с помощью которой можно проследить их местонахождение. Но надо иметь в виду, что радиоактивное излучение — это результат радиоактивного распада, и, следовательно, мы можем зарегистрировать только гибель атома, его превращение в другой атом. Вспомним, что радиоактивному распаду подвергаются не все радиоактивные атомы одновременно, распад происходит постепенно, в течение времени, которое зависит от свойств данного радиоактивного элемента, от его периода полураспада. Например, количество атомов радиоактивного фосфора 32 убавится наполовину за 14,3 дня, радиоактивного золота 198 за 2,7 дня, радиоактивной меди 64 за 12,9 часа и т. д.
В процессах, за которыми производят наблюдение с помощью метода меченых атомов, участвует такое большое количество атомов, что превращение даже десятков и сотен тысяч их практически не меняет общего числа атомов, общего количества вещества, убыль его остается незаметной для наблюдателя.
Как уже было сказано, в природных и лабораторных процессах обычно участвуют огромные количества атомов. При этом поведение одинаковых атомов — атомов одного и того же элемента — в одном и том же процессе одинаково. Например, атомы элемента кальция и фосфора, попадающие с пищей в организм человека, идут на построение костных тканей, атомы иода скапливаются в щитовидной железе и т. д. Неотличимо ведут себя и изотопы одного и того же элемента. Если приготовить смесь радиоактивных и нерадиоактивных атомов одного и того же элемента — смесь изотопов, то отделить атомы радиоактивного изотопа от атомов нерадиоактивного изотопа очень трудно. В большинстве природных и лабораторных процессов радиоактивные изотопы ведут себя совершенно так же, как и нерадиоактивные. Например, при сжигании серы, содержащей смесь атомов радиоактивного и нерадиоактивного изотопа, с кислородом соединяются и радиоактивные и нерадиоактивные атомы. При попадании смеси радиоактивных и нерадиоактивных атомов какого-либо элемента внутрь организма человека или животных оба вида атомов ведут себя химически и физически неотличимо.
Однако каждый атом радиоактивного изотопа рано или поздно распадается и дает сигнал в форме излучения. Если же в смеси атомов имеется достаточно большое количество радиоактивных атомов, то они распадаются непрерывно один за другим, все время сигнализируя о местопребывании и движении всей массы атомов данного элемента.
Мы теперь видим, что достаточно к веществу, за которым хотят провести наблюдение, подмешать молекулы этого же вещества, содержащие в своем составе атомы радиоактивного изотопа, чтобы в течение всего процесса знать местопребывание всей массы данного вида атомов по испускаемому атомами изотопа излучению. Метод меченых атомов, следовательно, — это способ наблюдать за поведением данного вида атомов в каком-либо процессе с помощью его радиоактивного изотопа.
Для проведения опыта с использованием метода меченых атомов получают радиоактивные изотопы, а из них — вещества, необходимые для исследования, часть молекул которых содержит радиоактивные атомы. По излучению, исходящему от радиоактивных молекул, следят за поведением и движением таких же молекул, но не содержащих радиоактивных атомов, — следят за всей массой вещества.
Не только радиоактивные изотопы могут быть использованы для метки атомов. У ряда химических элементов таких важных, например, как кислород и азот, нет радиоактивных изотопов с достаточно большой продолжительностью жизни. В этом случае используют нерадиоактивные изотопы элемента, за которым хотят вести наблюдение, с массой, отличающейся от средней массы атомов природного элемента.
Примешивая, например, к обыкновенной воде воду, содержащую кислород с массовым числом 18 (обычный кислород имеет массовое число 16), можно наблюдать за поведением всей массы кислорода по его изотопу с массой 18. Для наблюдения за движением атомов в этом случае используют масспектрометр — прибор, в котором можно определить массу отдельных групп атомов.
Метод меченых атомов в настоящее время широко применяется в различных областях науки; в ряде случаев он облегчает наблюдение за происходящими процессами, а часто без применения этого метода наблюдение невозможно.