Если из сложной смеси удается выделить все интересующие исследователя вещества, то оно выделяется загрязненным другим веществом, сходным с ним по свойствам. Если выделяют чистое вещество, то не удается его выделить без потерь. Благодаря этому определение количества вещества оказывается затрудненным. Меченые атомы помогают решить эту задачу.
Представим себе, что необходимо провести определение содержания металла рубидия в его руде. Полное выделение рубидия из руды практически невозможно. Однако несложно выделить из руды небольшую часть рубидия в виде чистой соли. Для анализа изотопным методом возьмем определенное весовое количество руды, растворим ее в кислоте, добавим к раствору определенное весовое количество соли рубидия, содержащее известное количество радиоактивного изотопа рубидия. Добавленный рубидий смешается с тем, который был в растворе. При этом доля радиоактивных атомов рубидия в растворе уменьшится во столько раз, во сколько раз рубидия в растворе стало больше, чем было добавлено. Далее химическим путем выделим из раствора небольшое количество чистой рубидиевой соли и определим вес выделенного рубидия и относительное содержание радиоактивного изотопа. Для этого определим с помощью счетчика, какое количество отсчетов дает миллиграмм выделенной рубидиевой соли. Разделив эту величину на число отсчетов, которое давал миллиграмм рубидиевой соли, добавленной к раствору, и умножив на количество добавленной соли, получим содержание рубидиевой соли в растворе после добавления. Отсюда, вычтя количество добавленной соли, нетрудно найти содержание рубидия во взятом растворе и, следовательно, в руде.
Активационный анализ. Перед вами несколько брусков стали, среди которых имеются образцы марганцовой стали. Можно ли отличить эти образцы, не прибегая к химическому анализу?
Да, можно, используя радиоактивные атомы.
Если образцы облучить нейтронами, то атомы элементов, входящих в состав стали, будут поглощать нейтроны, образуя радиоактивные элементы. Но не все атомы одинаково легко вступают в подобную реакцию. Атомы марганца, например, вступают в эту реакцию гораздо легче, чем атомы железа.
Хотя железа в стали больше, чем марганца, нейтроны будут взаимодействовать главным образом с атомами марганца.
Ядро атома марганца захватывает нейтрон и превращается в радиоактивное ядро с массой на единицу большей. Из марганца с массой 55 образуется его изотоп с массой 56, который распадается с испусканием электронов и гамма-лучей. Период полураспада радиоактивного марганца равен 2,6 часа.
Обнаружить радиоактивный марганец легко: нужно поднести к облученной нейтронами поверхности бруска счетчик. Количество электронов, попадающих в счетчик, будет тем больше, чем больше образовалось в стали радиоактивного марганца, а радиоактивного марганца образуется при одинаковых условиях облучения тем больше, чем больше марганца в стали. Следовательно, можно не только ответить на вопрос о том, какой образец стали является марганцовой сталью, но и определить количество марганца в стали. Прием этот прост, и с его помощью можно легко и быстро определить состав сплава, не разрушая детали.
Мы привели только один пример распознавания состава сплава с помощью облучения его нейтронами. Таким же способом можно установить содержание различных элементов в самых сложных комбинациях. Можно определить, например, содержание серы и фосфора в бумаге, углерода в поверхностных слоях стали и т. д. Этот способ получил название активационного анализа (материал активируется нейтронами или другими ядерными частицами).
Активационный анализ применяется тогда, когда нужно определить малые количества примесей в чистых металлах или быстро установить состав сложной смеси.
Особенно легко активационным анализом определить содержание редкоземельных элементов, так как они обладают очень большой способностью к поглощению нейтронов. Например, европий и гольмий могут быть определены в количествах до 10-11 грамма на грамм вещества. Определение же редкоземельных элементов в таких материалах, как графит, висмут, свинец и т. п., употребляемых в современной атомной промышленности, очень важно, так как редкоземельные элементы нарушают правильное течение процессов в ядерном реакторе.
Редкоземельными элементами называют 15 родственных по своим химическим свойствам металлов: лантан, церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий и лютеций. В периодической системе Д. И. Менделеева эти химические элементы имеют порядковые номера от 57 (лантан) до 71 (лютеций). Иногда к редкоземельным элементам относят также иттрий и (реже) скандий.