Фотосинтез. Углерод, идущий на построение клеток тканей, растения получают главным образом из воздуха в виде углекислого газа, который в листьях на свету претерпевает ряд сложнейших превращений. Процесс этот носит название фотосинтеза.
Фотосинтез сложен и многообразен. Исследования А. К. Тимирязева и его учеников заложили основу учения о фотосинтезе, но только с помощью метода меченых атомов удалось показать, как углекислый газ и вода превращаются в углеводы. Оказалось, что кислород, выделяющийся при синтезе углеводов, образуется из воды, что листья растений способны запасать солнечную энергию, то есть процесс фотосинтеза продолжается некоторое время и в темноте. В этих исследованиях растения выдерживались в различных условиях в атмосфере углекислого газа, содержащего радиоактивный углерод, затем с помощью счетчика определялось количество радиоактивного углерода в тканях листьев. Более сложные опыты заключались в том, что исследовалось не просто содержание радиоактивного углерода, а определялось, в какие химические соединения и при каких условиях он входит. После выдерживания в атмосфере радиоактивного углекислого газа растения убивались спиртом. При этом образовавшиеся в процессе фотосинтеза органические соединения переходили в раствор.
Для анализа состава раствора к нему добавляли нерадиоактивные вещества, наличие которых в нем предполагали. Эти вещества выделяли из смеси известными химическими приемами. Если вещество оказывалось радиоактивным, то тем самым доказывалось его образование в процессе опыта по фотосинтезу из углекислого газа, так как вместе с нерадиоактивным добавленным веществом извлекалось и то радиоактивное, которое было образовано в процессе фотосинтеза. Если же отделенное вещество было нерадиоактивно, то, следовательно, его образование не связано с поглощением углекислого газа из воздуха.
Интересными являются опыты с применением бумажной хромотографии. В этом случае спиртовой экстракт из растений, выдержанных в атмосфере радиоактивного углекислого газа, наносился на угол вертикально висящего листа фильтровальной бумаги.
Верхний край бумаги опускался в ванночку с органическим веществом — фенолом. Фенол впитывался бумагой и проникал в нее, перемещаясь все ниже и ниже. По мере смачивания бумаги фенолом вещества, нанесенные на ее угол, также передвигались сверху вниз. Скорость передвижения различных веществ при таком способе промывания бумаги различная, поэтому, если выдержать край бумаги в феноле определенное время, вещество переместится на какое-то определенное расстояние от края. Затем лист бумаги поворачивался на 90° и ее край опускался в ванну с раствором пропионовой кислоты в спирте. Снова происходило движение жидкости по бумаге сверху вниз, а вместе с ней и находящихся на бумаге веществ. Благодаря такому приему каждому веществу при стандартных условиях промывания соответствовал определенный участок бумаги. Предварительно те же операции проводили со смесью веществ, которые ожидали найти в растении, содержащих в своем составе радиоактивные атомы. Таким образом, находили места расположения отдельных веществ на бумаге при стандартном промывании. После промывания исследуемого раствора с помощью счетчика или фотографическим методом определяли, на каких частях бумаги находятся соединения, содержащие радиоактивный углерод, и, следовательно, какие вещества образовались из радиоактивного углекислого газа в условиях опыта (рис. 26).
Рисунок 26 показывает, что второе вещество — серин образуется из первого — алонина, так как при 5-секундной экспозиции растения в атмосфере радиоактивного углекислого газа его обнаружить не удается, а при 90-секундной выдержке растения в атмосфере радиоактивного углекислого газа он появляется. Подобные анализы радиоактивности отдельных составляющих смеси, полученной при различном времени выдерживания растений в атмосфере радиоактивного углекислого газа, позволяет найти последовательный ход превращения одних веществ в другие.