Дозиметры применяются для измерения суммарной дозы радиации. На рис. 35 показана схема карманного дозиметра, выполненного в виде авторучки. Этот дозиметр употребляется для определения дозы излучения, которую получает человек, носящий дозиметр, за все время пребывания в зоне излучения. Такой дозиметр носится в кармане. Он состоит из миниатюрной ионизационной камеры, электроскопа и микроскопа. На внутренний электрод электроскопа подается от специального зарядного устройства постоянное напряжение. При этом подвижной лепесток электроскопа, прикрепленный к электроду, отходит от последнего. Заряд, находящийся на электроде и лепестке, постепенно переносится ионизированным воздухом на корпус дозиметра. Сила отталкивания кварцевого, покрытого платиной лепестка от электрода уменьшается, и благодаря упругой силе лепесток приближается к электроду. Местоположение лепестка определяется через микроскоп глазом по шкале, находящейся внутри микроскопа. Шкала отградуирована так, что дозиметр непосредственно показывает количество миллирентгенов. Прибор позволяет измерять дозы рентгеновых и гамма-лучей от 0 до 200 миллирентгенов.
Рентгенометры предназначаются для определения мощности дозы. Мощность дозы — это доза в единицу времени. Поэтому шкала показывающего стрелочного прибора рентгенометров градуируется в рентгенах в час или микрорентгенах в секунду. Рентгенометр состоит из ионизационной камеры, усилителя ионизационного тока, регистрирующего электроизмерительного прибора и источника питания для усилителя и ионизационной камеры. Действие рентгенометра основано на регистрации с помощью микроамперметра ионизационного тока, возникающего в ионизационной камере под действием излучения, после его усиления. Величина ионизационного тока колеблется в пределах порядка 10-7–10-11 ампера, а обычные микроамперметры позволяют измерять токи не менее 1 микроампера. Рентгенометры бывают полевые — батарейные, в которых питание усилителя и ионизационной камеры осуществляется от батарей, сухих элементов, и лабораторные — сетевые с питанием от электрической сети переменного тока через выпрямитель тока. На рис. 36 приведен внешний вид лабораторного сетевого, а на рис. 37 — полевого батарейного рентгенометра. Последний представляет из себя один блок в металлическом кожухе. На верхней панели прибора размещены регистрирующий прибор и ручки управления. Внутри кожуха на передней панели крепится ионизационная камера и в отдельном отсеке размещаются источники питания — батареи сухих элементов. Усилитель тока и другие элементы радиотехнической схемы радиометра очень чувствительны к влаге и поэтому монтируются в отдельном герметизированном отсеке. Для измерения уровня бета-радиации в дне кожуха имеется отверстие. Гамма-излучение проникает в ионизационную камеру прямо через кожух прибора.
Радиометры предназначаются для определения степени зараженности воздуха, воды, поверхностей земли, пола, лабораторной мебели, одежды и тела радиоактивными изотопами.
Радиометр представляет собой прибор, состоящий из приемника излучений, в качестве которого используется газовый счетчик, усилителя импульсов тока, питающего устройства и регистрирующего прибора. В качестве регистрирующих приборов используют электромеханический счетчик импульсов тока или стрелочный прибор, проградуированный в импульсах тока в минуту.
Радиометры, так же как и рентгенометры, бывают сетевые — лабораторные и полевые — батарейные. В первых питание газового счетчика и усилителя тока осуществляется от электрической сети переменного тока, а во вторых — от батареи сухих элементов. Многие радиометры имеют наушники, позволяющие определять на слух интенсивность излучения. На рис. 38 представлен лабораторный сетевой радиометр, а на рис. 39 — полевой радиометр. В последнем счетчик вмонтирован в так называемый зонд. Зонд представляет собою дюралюминиевую трубку диаметром 26 мм, оканчивающуюся поворотной головкой, в которой крепится счетчик. В стволе зонда расположена радиосхема. Зонд радиометра герметичен и допускает его погружение в воду на 200 мм и работу с прибором под дождем.