В пищевой промышленности высокочастотный нагрев может с успехом применяться для сушки макарон, чая, табака, а также для выпечки хлебных изделий. На предприятиях, выпускающих фруктовые компоты, овощные консервы и томаты, высокочастотные установки используются для уничтожения бактерий. Эта операция, занимающая всего несколько секунд, не вызывает потери витаминов, аромата и вкусовых качеств обрабатываемых продуктов, но полностью уничтожает болезнетворные бактерии.
Для нагрева металлических изделий используют энергию магнитного поля катушки колебательного контура.
Плавка металлов при помощи электромагнитных волн сейчас широко применяется в производстве высококачественных сплавов, когда нельзя допускать соприкосновения металла с газами и пламенем топки. Применяется этот способ и при производстве специальных магнитных, легких или тугоплавких сплавов. В зависимости от производительности высокочастотной печи частота магнитного поля колеблется от 500 тысяч до 5 миллионов колебаний в секунду (чем больше металла должна расплавлять печь, тем ниже должна быть частота).
Электромагнитные волны используются и для сварки металлов. При обычной электросварке применяется переменный ток с частотой 50 колебаний в секунду. Его пропускают через место соприкосновения свариваемых металлов, которое сильно разогревается и плавится. Если же через место сварки пропускать еще и высокочастотный ток, создаваемый небольшим переносным радиоаппаратом, то качество сварки оказывается намного лучше. Этот способ особенно оправдывает себя при сварке разнородных металлов. Электромагнитные волны позволяют также надежно сваривать большие поверхности металлов со стеклом.
Радиозакалка деталей
Закалка поверхности стальных изделий нужна, чтобы повысить их прочность и твердость. При этом изделие нагревается и затем быстро охлаждается в воде или в масле. Закалке подвергается любой режущий инструмент, а также ответственные детали машин, которые при работе испытывают большие нагрузки — коленчатые валы, шестерни и т. д.
У таких деталей твердой должна быть только поверхность. Внутренняя же часть должна оставаться вязкой, незакаленной, иначе деталь окажется хрупкой.
Но в обычных печах металл прогревается по всей толщине. Советский ученый В. П. Вологдин предложил производить закалку электромагнитными волнами. Он создал несколько конструкций мощных генераторов, вырабатывающих эти волны, и, помещая деталь внутрь катушки колебательного контура, производил закалку.
Мы уже говорили, что в поверхностных слоях металлического изделия, помещенного в магнитное поле, возникают быстропеременные электрические токи. Под воздействием этих токов поверхность детали сильно разогревается. Если процесс нагрева происходит очень короткое время, то тепло не успевает передаться внутренним слоям изделия, и они остаются холодными. После опускания изделия в воду или в масло поверхностный слой закалится, станет твердым, а внутренние части останутся, как и до закалки, мягкими.
На рис. 9 показана поверхностная закалка шестерни.
Рис. 9. Разрез шестерни, закаленной при помощи электромагнитных волн.
Для определения толщины закаленного слоя шестерню разрезали и разрез подвергли травлению кислотой. После этого закаленный слой приобрел более темный цвет, чем остальной металл. Такая шестерня хорошо противостоит износу и в то же время не хрупка, так как внутренние слои не закалены.
Закалка стальных изделий в магнитном поле высокой частоты имеет много и других преимуществ по сравнению с обычными методами закалки — детали не коробятся при нагреве, увеличивается производительность работы, улучшается качество изделий, отпадает необходимость в последующей очистке и шлифовке деталей и т. д. Этот метод закалки удобен для поточного производства. Значительно улучшаются условия труда рабочих.
Радиозакалка получила теперь широкое распространение на предприятиях Советского Союза и других стран.
Электронные приборы контролируют продукцию
Контроль готовой продукции — важная задача любого производства. Он заключается в проведении различных измерительных операций, которые в некоторых случаях занимают половину времени, расходуемого на изготовление и обработку изделия. Чтобы сократить это время, создаются автоматически действующие контрольные устройства, работающие под наблюдением контролера, но без его вмешательства.
Огромную помощь в создании точных измерительных устройств, позволяющих контролировать различные этапы производства, оказывает радиоэлектроника. В настоящее время насчитываются сотни измерительных и контрольных приборов, включающих в себя радиолампы, конденсаторы, катушки индуктивности и другие радиодетали. О некоторых из этих приборов и устройств мы расскажем далее.