Радиоэлектронные приборы позволили физикам измерять ничтожные изменения линейных размеров тел. Для этой цели были созданы радиомикрометры. Одна из основных деталей радиомикрометра — конденсатор колебательного контура. Его емкость, как емкость любого конденсатора, зависит от расстояния между пластинами. А от емкости, как мы уже говорили, в свою очередь, зависит частота колебательного контура. Если одну из пластин соединить с предметом, длина которого изменяется, а другую закрепить неподвижно, то по отклонению частоты контура можно судить об изменении длины.
С помощью радиомикрометра, способного реагировать на ничтожно малые изменения размеров тел, изучают явления нагревания, намагничения и другие процессы. Современные электронные микрометры могут обнаруживать смещения в одну миллиардную долю миллиметра!
Для целого ряда физических исследований очень важно производить регулирование температуры с большой точностью. А для этого нужны точные измерители температуры. Электронные схемы измерения и регулирования температуры позволяют поддерживать ее постоянство с точностью свыше одной тысячной доли градуса.
Огромную помощь оказывают электронные приборы ученым, изучающим условия работы различных машин и механизмов. Здесь важно знать, какие механические усилия испытывают те или иные детали или узлы. Чтобы измерять усилия, к деталям и узлам пристраивают чувствительные устройства — «датчики», которые под действием механических усилий вырабатывают электрические сигналы. Чем большее усилие испытывает датчик, тем большей силы импульсы вырабатывает он. Импульсы от датчиков усиливаются ламповыми усилителями и подаются на стрелочные приборы.
Развитие радиоэлектронной техники явилось базой для создания приборов, использующих не радиоволны, а неслышимые звуки — ультразвуки[9]. В этих приборах радиоэлектронные схемы применяются для создания ультразвуковых волн.
В настоящее время с помощью ультразвуков определяют глубины морей, очищают и полируют поверхности металлических изделий, ускоряют химические реакции, затачивают резцы из сверхтвердых сплавов, режут листы металла и стекла и даже стирают белье. Большое значение имеют ультразвуковые дефектоскопы, впервые разработанные советским ученым С. Я. Соколовым. С помощью этих приборов можно в массивных металлических изделиях обнаружить мельчайшие дефекты: трещины, раковины, посторонние тела[10].
Наиболее ценен вклад радиоэлектроники в ядерную физику — науку, изучающую строение атомного ядра. Для исследований в этой области были созданы мощные физические установки — ускорители элементарных частиц (электронов, протонов и др.). При помощи ускорителей ученые осуществляют «стрельбу» по ядрам атомов различных веществ. Это позволяет расщеплять атомы, выделять огромную энергию, получать новые вещества.
Современный ускоритель — сложнейшее радиоэлектронное устройство[11]. Это — огромное сооружение, весящее десятки тысяч тонн. Ускорение элементарных частиц осуществляется в большой вакуумной камере, расположенной между полюсами гигантского электромагнита. На специальные электроды от генератора подается ускоряющее переменное напряжение. Оно, как и магнитное поле электромагнита, воздействует на частицу — «подталкивает» ее, увеличивает ее скорость. Благодаря этому двойному воздействию элементарная частица начинает двигаться по спирали и, разгоняясь, постепенно удаляется от центра вращения. Наступает момент, когда электромагнит уже не в состоянии удерживать частицу, и она устремляется наружу и поражает «цель».
Сейчас в различных странах используется несколько типов ускорителей элементарных частиц. Самыми мощными из них являются синхрофазотроны. В них изменяется не только частота переменного напряжения, подаваемого на электроды, но и величина магнитного поля. Это позволяет получить частицы с энергией в миллиарды электронвольт[12].
Крупнейшие установки для ускорения частиц высоких энергий открывают необозримые горизонты для развития ядерной физики. Самая мощная ускорительная установка — синхрофазотрон — построена в Советском Союзе. В этой установке за 3,3 секунды частицы делают внутри камеры четыре с половиной миллиона оборотов и проходят при этом путь в миллион километров, двигаясь почти со скоростью света. На синхрофазотроне удалось придать частицам энергию в 10 миллиардов электронвольт!
9
Ультразвуками называют неслышимые звуки с частотами выше 16 000 — 20 000 колебаний в секунду.
10
Об ультразвуках см. брошюру «Научно-популярной библиотеки» Гостехиздата: проф. Б. Б. Кудрявцев, Неслышимые звуки.
11
Подробнее об этих приборах рассказывается в брошюрах «Научно-популярной библиотеки» Гостехиздата: К. Б. Заборенко, Радиоактивность и В. А. Лешковцев, Атомная энергия.
12
Электронвольт — единица измерения энергии электронов. Если между катодом и анодом приложено напряжение 250 вольт, то каждый электрон в этом электрическом поле может приобрести энергию в 250 электронвольт.