Выбрать главу

Пролетные траектории позволяют выполнить только два сеанса радиорефракционных измерений — один при заходе КА за диск планеты и второй — при выходе КА из-за диска, и, соответственно, дают информацию об атмосфере только для двух районов планеты (районов радиозахода и радиовыхода КА). Вывод космических аппаратов на орбиту искусственных спутников планеты позволяет проводить радиорефракционные измерения многократно.

Такие многократные измерения характеристик атмосферы были выполнены радиорефракционным методом с помощью первого искусственного спутника Марса «Марс-2». По данным этих измерений самое высокое значение приповерхностного давления в одном из районов планеты равно 10 мбар.

Космические аппараты «Марс-2, -4 и -6» позволили исследовать ионосферу планеты при различной высоте Солнца. При проведении этих измерений было замечено, что интенсивность ионизации, высотная структура ионосферы и высота максимумов ионизации сильно зависят от высоты Солнца. Было отмечено, что ионосфера имеет два максимума ионизации, расположенных на разных высотах. Уменьшение высоты Солнца приводило к повышению высоты верхнего (главного) максимума ионизации и к уменьшению в нем концентрации электронов. При этом высота нижнего максимума ионизации практически оставалась постоянной (~ 110 км). Концентрация электронов в нижнем максимуме падала с уменьшением высоты Солнца.

В главном максимуме ионизации концентрация электронов днем составила 1,7 · 105 в 1 см3. Дневная ионосфера значительно протяженнее ночной и прослеживалась в диапазоне высот от 90 до 500 км.

Во время пролета вблизи Марса автоматических станций «Марс-4 и -6» были проведены радиорефракционные измерения на двух длинах волн (8 и 32 см) методом дисперсионного радиоинтерферометра, подобного использованному ранее на ИСЛ «Луна-14 и -19». В результате проведенных измерений было отмечено, что ночная ионосфера также, как и дневная, имеет два максимума ионизации. Однако ночью главный максимум располагается низко. Он совпадает с нижним дневным максимумом ионизации (на высоте 110 км) и имеет концентрацию 4,6 · 103 электронов в 1 см3. Выше главного максимума на высоте 190 км находится второй максимум ионизации с концентрацией электронов 2,2 · 103 в 1 см3.

В вечерней ионосфере главный максимум ионизации располагается на высотах 125–140 км с концентрацией (6–8) · 104 электронов в 1 см3. Советские ученые М. А. Колосов и Н. А. Савич сделали вывод о причине формирования ионосферы на этих высотах днем и ночью. Они предположили, что источником ионизации является галактическое излучение. На рис. 9 показаны высотные профили концентрации электронов по данным измерений АМС «Марс-4» ночной, вечерней и дневной ионосфер Марса. Измерения дневной ионосферы Марса, показанные на этом рисунке, были выполнены на АМС «Марс-2» радиорефракционным методом (на одной частоте).

С помощью радиорефракционных измерений, выполненных во время полета «Маринера-9» на орбите искусственного спутника Марса, 'было получено большое количество информации, позволившей построить высотные зависимости температуры и давления в нижней атмосфере над разными точками поверхности планеты. По данным этих измерений была построена карта давления у поверхности, которое в разных районах варьировалось от 1 до 9 мбар в области широт ±65°.

Если предположить, что локальное давление у поверхности определяется лишь высотой расположения данного района измерений, то соответствующая разность крайних значений давлений будет соответствовать разности высот 25,5 км. Если отбросить области с измеренными экстремальными давлениями, то перепад высот между остальными измеренными участками на поверхности Марса не превысит 13 км.

Рельеф Марса исследовался с помощью наземной радиолокации, радиорефракционных измерений и 'Методами инфракрасной и ультрафиолетовой спектроскопии с космических аппаратов серии «Марс» и «Маринер». Совокупность полученных результатов позволила провести расчет локальных высот и построить по этим данным топографическую карту Марса. По данным этой карты максимальный перепад высот на Марсе составляет 31 км. На Марсе есть целый ряд горных вершин, которые значительно выше Эвереста — самой высокой точки Земли. В то же время на Марсе существуют области, лежащие значительно ниже среднего уровня поверхности планеты. К ним относится равнина Хеллас (Н = –4 км).

Рис. 9. Концентрация электронов в ионосфере Марса в зависимости от высоты (по данным измерений «Марс»): 1 — для ночной; 2, 3 — вечерней и 4 — дневной ионосфер

Радиорефракционные измерения показали, что фигура Марса весьма несимметрична. Так, южное полушарие в среднем выше северного на 3–4 км. Высоты в северном полушарии в основном отклоняются на 1 км в сторону понижения относительно среднего радиуса планеты. Причем наибольшие впадины — до 3 км, отмечаются на широтах 60–65°. В южном полушарии превышение большинства высот относительно среднего радиуса составляет 3–4 км, а в приполярной области это превышение уменьшается до 2–3 км.

По данным радиорефракционных измерений, а также по результатам определений радиуса планеты, используя дифракцию радиоволн, были определены размеры планеты, при представлении ее трехосным эллипсоидом.[5] Большая и малая полуоси, располагающиеся в экваториальной плоскости планеты, согласно этим данным равны соответственно 3400,12 и 3394,19 км, а полярный радиус составляет 3375,45 км.

Высотные зависимости температуры, полученные в результате обработки радиорефракционных измерений, проведенных на АМС «Маринер-9», показали, что для исследованных районов усредненная величина изменения температуры с высотой в нижней атмосфере колеблется от 0 до 3,8 К/км, что значительно ниже адиабатического (5 К/км). Этот факт свидетельствует об интенсивных динамических процессах в атмосфере и хорошо согласуется с наличием на Марсе сильных ветров. Следует отметить, что величина этого параметра, определенного в разных районах планеты, не коррелируется ни с широтой, ни с местным временем.

По данным радиорефракционных измерений температура атмосферы у поверхности (в измеренных точках) в области широт ±80° колеблется днем от 150 до 280 К, а ночью от 140 до 200 К. Значение локальной температуры зависит от высоты данного участка, широты, времени суток и сезона.

Наряду с исследованием нижней атмосферы «Маринер-9» провел многократные измерения рефракции радиоволн в дневной ионосфере планеты. По этим данным были построены высотные зависимости концентрации электронов и определена температура экзосферы планеты.

Ионосфера исследовалась для значений солнечного зенитного угла от 0° (Солнце в зените) до 100° (Солнце на 10° ниже горизонта). Максимум концентрации электронов в диапазоне солнечных зенитных углов от 0° до 100° снижался от 1,8 · 105 до 0,2 · 105 электронов в 1 см3. При этом и высота максимума ионизации изменялась от 132 до 145 км днем и от 120 до 150 км вечером.

На искусственных спутниках Марса «Марс-3 и -5» проводились измерения интенсивности и поляризации радиоизлучения планеты на длине волны 3,4 см с линейным разрешением на поверхности от 70 до 400 км. В результате обработки данных были получены локальные значения эффективной диэлектрической проницаемости и термодинамической температуры грунта.

Орбиты ИСМ «Марс-3 и -5» по своим параметрам существенно отличались друг от друга. Так, период обращения «Марса-3» составлял примерно 12 земных суток, а период «Марса-5» оказался близким к суточному, т. е. к периоду собственного вращения Марса вокруг своей оси. Это позволило для одних и тех же локальных участков при наблюдении с помощью ИСМ «Марс-5» получить четырехкратные измерения, которые были выполнены примерно при одной и той же ориентации антенны бортового радиотелескопа относительно поверхности планеты.

вернуться

5

Следует сказать, что фигура Земли, представленная трехосным эллипсоидом, имеет размеры: большой и малой полуосей, расположенных в экваториальной плоскости, — 6378,345 и 6378,145 км соответственно, и полуоси в направлении от экватора к полюсам — 6356,863 км.