Анализ характера переизлучения поверхности Луны в данном эксперименте позволил сделать следующие выводы.
Большинство «радиоярких» участков совпало с внутренними склонами кратеров. Часть «радиоярких» участков находилась на очень неровных участках Моря Смита. «Радиояркие» участки, находившиеся внутри кратеров, обладали повышенным переизлучением не только за счет эффекта фокусировки радиолокационного сигнала стенками кратера, но также и за счет более плотного грунта внутри кратера.
Бистатическая радиолокация, проведенная на ИСЛ «Эксплорер-35», отличалась от предыдущих экспериментов тем, что была применена сложная спектральная обработка отраженного сигнала. Суть этой обработки заключалась в том, что отраженный сигнал вначале записывался на магнитофон и затем подвергался последующей обработке на ЭВМ совместно с данными траекторных измерений. В результате такой обработки определялись мгновенные спектры отраженного сигнала. Сопоставление полученных спектров с результатами теоретически рассчитанных спектров позволило определить значения среднеквадратичных углов наклона поверхности вдоль трассы измерений, а также усредненные значения ε для небольших по протяженности участков трассы перемещения точки зеркального отражения. Этот метод обработки впоследствии стал успешно применяться в большинстве бистатических радиолокационных экспериментов.
В экспериментах, проведенных на ИСЛ «Эксплорер-35», было отмечено, что интенсивность отраженных сигналов от морских районов примерно на 30 % выше интенсивности отраженных сигналов от материковых районов. Это соответствовало увеличению примерно на 15 % среднего значения эффективной диэлектрической проницаемости вещества грунта морских районов относительно материковых в слое толщиной до 10 м.
Такой результат был неожиданным, так как в то время (1967 г.) считалось, что грунт лунных морей должен быть более рыхлым, чем материковый грунт. Впоследствии факт большой плотности скальных пород в морских районах был подтвержден экспериментально как на Луне, так и в земных лабораториях.
По данным радиолокационных измерений вблизи кратера Флемстид был отмечен выход на поверхность скальных пород в этом районе. Такой вывод был сделан по сильному увеличению амплитуды отраженного сигнала в этой области. Следует сказать, что результаты этого эксперимента хорошо коррелировались с данными наземных радиолокационных и инфракрасных измерений этого района, которые также свидетельствовали о более высокой средней плотности грунта в этой области Луны.
На ИСЛ «Луна-14» были проведены бистатические радиолокационные эксперименты, подобные экспериментам, ранее выполненным на ИСЛ «Эксплорер-35». Было подтверждено, что форма спектра отраженного сигнала является хорошим индикатором степени неровности поверхности. В спектре иногда появлялись несколько максимумов (наличие нескольких максимумов объясняется отражением радиоволн от различных горных склонов и резких изломов). Рассчитанные по спектру значения среднеквадратичных углов наклона для морских районов (длина волны 1,7 м) составили ~ 3°, а для материковых районов эта величина достигла 14°.
Спектры отраженных сигналов, полученные в экспериментах на ИСЛ «Луна-19» в дециметровом диапазоне радиоволн (32 см), по своему характеру обычно соответствовали спектрам, которые ранее были измерены на ИСЛ «Луна-14» в метровом диапазоне радиоволн. Однако появление спектров отраженного сигнала с несколькими максимумами в дециметровом диапазоне было значительно реже по сравнению с измерениями в метровом диапазоне. Это свидетельствовало о том, что в дециметровом диапазоне спектр отраженного сигнала формируется за счет более мелких неоднородностей, которые более равномерно распределены по поверхности, чем более крупные неоднородности, определяющие спектр в метровом диапазоне. Эффект сильной изрезанности спектра на дециметровых волнах обычно возникал, когда точка зеркального отражения попадала в район с группой кратеров, размеры которых составляли несколько километров, т. е. были сравнимы с размерами зоны наибольшего отражения.
Для районов с примерно одинаковой структурой поверхности полученные значения среднеквадратичных углов наклона в дециметровом диапазоне оказались, примерно, на 40 % выше, чем в метровом диапазоне. Это соответствует относительно большему числу неоднородностей с меньшими линейными размерами. Такой же вывод был получен и при проведении радиолокационных исследований Луны с Земли методом моностатической радиолокации. Измерения, проведенные с Земли для центрального района диска Луны, показали, что спектр отраженного сигнала расширяется с уменьшением длины волны. Это хорошо коррелируется с зависимостью количества неоднородностей на лунной поверхности от их размеров. Так, число кратеров на Луне сильно возрастает с уменьшением их диаметра. Сильно возрастает также и количество камней в зависимости от уменьшения их линейного размера и т. д.
Проведение бистатических радиолокационных измерений позволило сделать следующий вывод: морские районы более ровные, чем материковые, в масштабе десятков и сотен метров, но менее ровные в масштабе нескольких дециметров. Основные результаты бистатической радиолокации Луны приведены в табл. 2.
Таблица 2
Исследования Меркурия
Космическая история изучения этой планеты только начинается. Пока вблизи планеты в 1974 и 1975 гг. пролетел только один космический аппарат — «Маринер-10». Он произвел фотографирование поверхности этой планеты и измерение характеристик околопланетного пространства. Фотографии показали, что меркурианский рельеф сильно напоминает лунный.
При первом пролете «Маринера-10» вблизи планеты 29 марта 1974 г. были проведены радиорефракционные измерения с целью определения характеристик атмосферы и ионосферы планеты, о свойствах которых были весьма разнообразные предположения.
Измерения проводились одновременно на двух длинах волн — 3,6 и 13,1 см, при заходе и выходе АМС за видимый с Земли диск планеты.
В результате этих измерений не удалось обнаружить ионосферы, подобной марсианской или венерианской. В результате предварительного анализа был лишь оценен верхний предел максимума концентрации электронов. Он оказался равным 4000 электронов в 1 см3 на ночной стороне планеты и 1500 электронов в 1 см3 на дневной стороне.
Анализ результатов определения верхнего предела плотности электронов в ионосфере планеты позволил оценить верхний предел плотности нейтральных частиц у поверхности планеты, и в предположении, что атмосфера планеты состоит из газа с большим молекулярным весом (например, аргона), определить атмосферное давление у поверхности. Оно при этих предположениях не превышает 10–11 атм., т. е. атмосфера у планеты Меркурий весьма разреженна. Последующая обработка результатов показала, что ионосфера у Меркурия отсутствует.
По данным измерений ультрафиолетового спектрометра АМС приповерхностное давление атмосферы, содержащей гелий, не превышает 10–14 атм., т. е. примерно такое же, как и на Луне.
Исследования Венеры
В 1967 г. почти одновременно в околопланетное пространство Венеры были выведены две межпланетные автоматические станции «Венера-4» и «Маринер-5», Полетом этих автоматических станций начался этап радиофизических исследований планеты с помощью служебной радиоаппаратуры космических аппаратов. Так. анализ в Центре дальней космической связи СССР интенсивности сигнала, излучавшегося передатчиком спускаемого аппарата (СА) станции «Венера-4», подтвердил, что радиоволны этого диапазона (32 см) не ослабляются атмосферой планеты. Во время измерений были отмечены флуктуации амплитуды радиосигнала, интенсивность которых возрастала по мере спуска СА. Наличие таких флуктуаций амплитуды радиосигнала показывало, что атмосфера планеты турбулентна. Анализ характера распространения в атмосфере планеты радиоволн, которые излучались передатчиками спускаемых аппаратов, проводился и на последующих АМС серии «Венера». Записи амплитуд, принятых в Центре дальней космической связи СССР сигналов передатчиков СА «Венера-5, -6, -7, -8», показали, что быстрые флуктуации сигналов, связанные с турбулентностью венерианской атмосферы, возрастают с уменьшением высоты над поверхностью и увеличением угла между направлением на Землю и местной нормалью СА. Однако на основе проведенных измерений было показано, что при углах более 75° уменьшение амплитуды радиосигнала даже в дециметровом диапазоне может быть столь сильным, что это может привести к временным перерывам в радиосвязи со спускаемым аппаратом.