Скорость самолетов увеличилась, появились спутники и ракеты — небольшие цели, двигающиеся с огромными скоростями. Входят в строй радиолокационные станции с антеннами в несколько десятков метров длиной. Такую антенну не повернешь. И поэтому вместо механического перемещения антенны стали использовать электронное управление диаграммой направленности неподвижной антенны.
Для пояснения принципа такого электронного управления придется снова обратиться к примеру из спортивной жизни. Иначе понять его будет довольно трудно.
Приглашаю Вас в плавательный бассейн. Восемь пловцов, абсолютно равных по силам, должны доплыть до финишной стенки, вылезти из воды и собраться вместе. Встанем у финишной стенки и понаблюдаем. Пловцы, поскольку их силы равны, плывут прямо на нас ровной линией. Направление их движения перпендикулярно финишной стенке. Они одновременно достигнут бортика, вылезут из воды, и в этот момент мы сразу увидим группу из восьми человек. А теперь усложним ситуацию. Предположим (хотя в жизни так и не бывает), что бассейн имеет несколько необычную форму. Стартовая стенка его перпендикулярна боковым, а финишная сильно скошена, так что бассейн имеет не прямоугольную, а трапециевидную форму. Снова пригласим пловцов на старт, а сами снова встанем у финишной стенки. Теперь пловцы двигаются на нас как бы сбоку и линия их движения не перпендикулярна финишной стенке. Вот пловец на самой короткой дорожке уже вылез из бассейна, а остальные еще плывут. Если бассейн таков, что разница во времени между пловцами на соседних дорожках составляет одну секунду, то первый пловец будет ждать на бортике последнего пловца семь секунд, второй — шесть и так далее. И только когда последний пловец появится на бортике, мы сможем собрать их всех вместе.
А теперь снова вернемся к антеннам. Разобьем большую антенну на отдельные элементы, которые, по существу, представляют собой небольшие самостоятельные антенны. Если радиосигналы приходят с направления, перпендикулярного антенне, то они поступают на все элементы одновременно (бассейн правильной формы). Такие сигналы можно складывать и подавать на последующие каскады приемника. Если же сигналы приходят с других направлений, то они достигают элементов антенны неодновременно. Для того чтобы их можно было сложить, надо задержать ранее пришедшие сигналы до момента поступления сигнала с последнего элемента антенны (трапециевидный бассейн). Эту задержку выполняют специальные электронные устройства, называемые линиями задержки. Таким образом, для каждого элемента антенны необходима своя линия задержки. Чем сильнее отличается направление, откуда приходит радиоволна, от перпендикуляра к антенне, тем больше задержка-сигналов, поступающих на соседние элементы антенны. Изменяя значение времени задержки, мы изменяем направление, в котором «смотрит» антенна. Сигналы, приходящие с этого направления, после антенны будут суммироваться, а сигналы с других направлений суммироваться не будут, так как для них значения задержек не соответствуют разности времени появления сигналов на отдельных элементах.
Наконец, последний вопрос, который может возникнуть. Зачем нужно складывать сигналы от отдельных элементов антенны? Во-первых, именно сложение сигналов с разными задержками и обеспечивает направленность и возможность изменять направление наблюдения. А во-вторых, суммарный сигнал становится мощнее и его легче принимать и обрабатывать.
Пока что мы говорили о приемной антенне, но точно по такому же принципу работает и передающая антенна с электронным управлением диаграммой направленности. Установив то или иное значение задержки для отдельных излучающих элементов, мы тем самым посылаем суммарный сигнал всей сложной системы в заданном направлении. Сложная электронная система по заранее выбранному закону изменяет задержки во всех элементах системы, и луч радиолокатора обшаривает пространство в поисках цели. Вот как работает неподвижная антенна с электронным управлением диаграммой направленности.
Хотя с помощью одной антенны нельзя осуществить круговой обзор, все же большой сектор пространства находится под непрерывным наблюдением. Если нужен круговой обзор, то придется строить несколько станций, направленных в разные стороны. Темп обзора в этом случае зависит от того, сколько раз в секунду станция может просмотреть свой сектор. Заказчик хочет, чтобы темп обзора был высоким? Ну что же, если выделены соответствующие средства и приложены соответствующие усилия, то в большинстве случаев это требование удовлетворить удается.
Подведем некоторые итоги. Мы знаем, как можно выполнить примерно половину требований заказчика. Но за нами остался долг — неразрешенный конфликт между остальными требованиями. Для выхода из любой конфликтной ситуации всегда можно найти компромиссное решение. Об этом и пойдет речь в следующей главе, в которой мы узнаем…
Как это у нее получается?
Чтобы не испытывать терпения читателя, ответим сразу, хотя, может быть, и не совсем понятно. За счет выбора подходящего сигнала и его обработки на приеме с помощью согласованного фильтра. А теперь попробуем разобраться.
Задолго до того, как радиоинженеры превратят бумажные схемы в сложные электронные блоки, а строители возведут конструкции из стали и бетона, специалисты из теоретических отделов начинают ломать головы и копья (то бишь авторучки марки «Союз») в спорах о том, каков должен быть сигнал будущей станции. И дей-ствительно, задача не из легких Напомним требования к сигналу.
Сигнал должен иметь большую энергию. При ограниченной мгновенной мощности это означает, что у него должна быть большая длительность. А для высокой точности определения координат и разрешающей способности хотелось бы иметь как можно более короткий сигнал. И это еще не все. Заказчику нужно, чтобы слабый отраженный сигнал можно было принять и обработать на фоне достаточно сильных помех. Задача осложняется еще и многообразием различного вида помех. Тут и естественные помехи от грозовых разрядов, и собственный шум приемника, и помехи от работающих рядом электроустройств, и целый ряд других шумов. А если станция будет работать в боевой обстановке, то возможно появление преднамеренно создаваемых противником искусственных помех. И вот среди этого разноголосого хора помех нужно услышать тоненький и слабенький голосок отраженного сигнала.
Скажем по секрету, что и это еще не последнее требование заказчика. Но для нас хватит и уже перечисленных. И так задача, стоящая перед теоретиками, достаточно сложная.
К тому же радиоинженеры, которым предстоит разрабатывать и создавать аппаратуру, требуют, чтобы теоретики не отрывались от грешной земли. Их блестящие идеи должны быть осуществимы при сегодняшнем уровне техники. Кроме того, реализация предложений теоретиков не должна обходиться слишком дорого. Больше всего разработчиков устроил бы такой проект новой станции, в котором все новые устройства и схемы можно было бы собрать из уже имеющихся, отработанных в производстве элементов. Это и удобно и выгодно, так как станция будет готова раньше и работать она будет надежнее. Но иногда старыми схемами и элементами не обойдешься. Поэтому для реализации какого-нибудь оригинального решения приходится разрабатывать принципиально новые схемы. И снова встречаемся с противоречием на этот раз между интересами теоретиков и производственников. Как всегда, находится компромиссное решение. В чем-то уступают теоретики, на что-то скрепя сердце соглашаются разработчики и производственники.
Надо сказать, что в последнее время в таких спорах чаще побеждают теоретики. Можно понять почему. В первые годы развитие радиолокации шло в основном за счет улучшения технических характеристик радиолокационных станций. Повышалась мощность передатчиков, увеличивались антенны, осваивались новые диапазоны волн. Все это, конечно, улучшало качество радиолокационных станций. Но в какой-то момент стало ясно, что разработчики выжали из техники все, что можно, точнее, почти все, что можно. А требования непрерывно растут. И вот тут-то на первый план вышли теоретики. Их исследования показали, что только за счет использования сигналов подходящего вида и новых методов их обработки можно существенно улучшить характеристики радиолокационных станций. Это был крупный качественный скачок в теории и практике радиолокации. Он произошел в годы второй мировой войны практически одновременно в нашей стране, США, Англии и Германии.