Истребитель YF-23 в полете
Истребитель YF-23
В соответствии с последними достижениями аэродинамики и технологии «Стеле» YF-23 имел интегральную аэродинамическую схему с ромбовидным в плане среднерасположенным крылом со срезанными законцовками и V-образным оперением. Разработчики сделали упор на улучшение сверхзвуковых характеристик и уменьшение радиолокационной, инфракрасной и визуальной заметности самолета. На YF-23 были применены малоотражающие внешние формы и радиопоглощающие материалы. Самолет имел в плане контуры, образованные прямыми линиями. В результате число направлений пика отражения радиолокационных волн было снижено до четырех, а на других ракурсах радиолокационная заметность самолета была снижена весьма значительно. Передние и задние кромки цельноповоротных хвостовых V-образных поверхностей были параллельны кромкам крыла в плане. Кромки всех створок и основных панелей обшивки, включая передние и задние кромки отсеков вооружения, задние кромки верхних створок сопел и хвостовой части фюзеляжа, имели зигзагообразную форму, соединениям подвижных и неподвижных элементов конструкции самолета также была придана специфическая форма для уменьшения отражения приходящего радиолокационного сигнала. С этой же целью фюзеляж- гондола, в которой размещались кабина летчика и отсек вооружения, имела шестигранное поперечное сечение. Фюзеляж, гондолы двигателей и крыло имели очень плавное сопряжение. Точно такое же решение было применено на бомбардировщике-«стелсе» Нортроп В-2 «Спирит».
В конструкции обоих истребителей, создававшихся по программе ATF, были использованы перспективные конструкционные материалы, в частности, полимерные композиты, композиты с металлической матрицей, алюминиево-литиевые сплавы. Наиболее широкое применение нашли полимерные композиты, доля которых (по массе) в конструкции планера опытного самолета YF-23 достигала 25%. Для применения в конструкции самолета изучался термопластичный материал на основе полиэфиркетонового связующего и углеродных волокон с индексом AS-4.
Крыло имело односекционные отклоняемые носки, а также элероны и закрылки, служащие также воздушными тормозами (при торможении внутренние поверхности отклонялись вниз, а внешние – вверх, вспомним конструкцию расщепляющихся элевонов на «летающих крыльях» Джона Нортропа). Удлинение крыла составляло 2,0, угол стреловидности по передней кромке составлял 40°, по задней кромке -40°, центральная хорда 12,22 м, концевая хорда – 1,01 м, сужение крыла – 12,1.
«Черная вдова II». Дозаправка в воздухе
От носа самолета вдоль его бортов к корневым частям крыла шли небольшие узкие боковые наплывы с внешней острой кромкой, при виде в плане образованной тремя прямыми линиями. Эти наплывы служили для генерирования вихрей при маневрировании на больших углах атаки, с целью предотвратить неуправляемое рыскание самолета. Кабина одноместная, располагалась высоко и была значительно вынесена вперед относительно крыла, что в сочетании с изогнутыми бортами кабины и кромкой лобового стекла обеспечивало летчику прекрасный обзор вперед-вниз и назад- вбок. Катапультируемое кресло Макдоннел Дуглас NACES II обеспечивало аварийное покидание самолета на стоянке и в полете на скорости до 1150 км/ч.
Стремление получить высокие характеристики на больших углах атаки обусловило широкое разнесение поверхностей V-образного оперения, наклоненных наружу на 45°, поворачивающихся целиком и обеспечивающих управление самолетом как по тангажу, так и по рысканию.
Трехопорное шасси с одноколесными стойками рычажной схемы было рассчитано на посадку без выравнивания с вертикальной скоростью 3,05 м/с. Передняя стойка убиралась поворотом вперед, основные – назад.
Два форсированных двухконтурных ТРД «Пратт- Уитни» F119-PW-100 с постоянной умеренной степенью двухконтурности являются дальнейшим развитием ставших классикой двигателей семейства F100. ТРДДФ первых серий имели максимальную статическую тягу 13 900 кгс, в дальнейшем возможно ее увеличение до 15 900 кгс.
Двигатель «Дженерал Электрик» F120 имел гораздо более интересную конструкцию. С целью оптимизации удельного расхода топлива на разных режимах полета F120 мог менять в полете степень двухконтурности: на дозвуке она была больше, на сверхзвуке – уменьшалась благодаря наличию створок перепуска воздуха между трактами компрессора и вентилятора. Но несмотря на безупречную работу, по стоимостным характеристикам да и по сложности конструкции двигатель Дженерал Электрик проигрывал изделию фирмы «Пратт-Уитни». Кстати, именно поэтому в дальнейшем именно F119 был выбран в качестве силовой установки для победившего в конкурсе ATF истребителя F-22.
Боковые подкрыльевые воздухозаборники двигателей трапециевидного сечения имели S-образные каналы для экранирования первых ступеней компрессоров двигателей – самых отражающих элементов конструкции любого самолета – от прямого облучения вражескими РЛС. Тракты заборников были изнутри покрыты радиопоглощающим материалом. Наклон боковых стенок воздухозаборников примерно соответствовал наклону поверхностей V-образного оперения. Сверху в передних корневых частях крыла располагались створки перепуска воздуха для регулирования режима работы воздухозаборников.
YF-23 в полете
Сопла двигателей были плоскими. Несмотря на потери тяги от неоптимальной формы сопел, такая форма значительно снижала заметность самолета. Системы управления вектором тяги в отличие от самолета F-22 предусмотрено не было: подвижной выполнили лишь верхнюю створку сопла. Она использовалась для регулирования площади проходного сечения сопла и для реверса тяги на посадке. Реактивные струи из сопел истекали сверху хвостовой части фюзеляжа между консолями оперения над плоской поверхностью, подавлявшей инфракрасное излучение и дополнительно экранировавшей двигатели от прямого наблюдения сзади. Система управления вектором тяги, необходимая построенному по классической аэродинамической схеме F-22, на F-23 представлялась дорогим, тяжелым и ненужным излишеством: схема с V-образным сильно разваленным оперением, не теряющим эффективности ни на малых скоростях, ни на больших углах атаки, позволяла «Черной вдове» выполнять интенсивные маневры и с неподвижными соплами. Требовалось лишь разработать соответствующие законы управления.
На самолете была установлена цифровая ЭДСУ с волоконно-оптическими линиями передачи данных и с центральной ручкой управления в кабине летчика. Архитектура бортового комплекса серийного самолета должна была включать в себя мощнейший многократно резервированный бортовой IBM-совместимый компьютер, который взял бы на себя функции множества бортовых систем, в том числе ЭДСУ, системы жизнеобеспечения, управления навигационным комплексом, системой связи, обнаружения и опознавания целей, управления вооружением, силовой установкой, системой постановки активных и пассивных помех и т. п. Фактически летчик полностью изолировался непосредственно от органов управления самолетом: он лишь должен был давать команды бортовому компьютеру, а тот – управлять самолетом по собственному усмотрению. Кстати, в настоящее время эта архитектура (хороша она или плоха – покажет время) реализована на серийных F-22. По мере совершенствования элементной базы компьютера платы и целые блоки в электронном мозгу самолета должны заменяться на более совершенные.
Для получения данных о воздушной скорости, барометрической высоте, сносе, угле атаки и т. п. самолет был оборудован многофункциональными штангами ПВД по бокам носовой части фюзеляжа. Сбоку и снизу носовой части имелись также несколько отверстий для невыступающих датчиков воздушного давления. Фирма «Нортроп» разработала систему, способную получать все необходимые воздушные параметры с помощью невыступающих датчиков, даже в сверхзвуковом полете. Штанги ПВД предполагалось использовать для проверки невыступающих датчиков и затем вообще демонтировать для понижения заметности. Предполагалось использование на серийном самолете средств защиты оборудования и летчика от лазерного оружия, в частности поляризации остекления кабины.