Часть 2
Методология психодинамических исследований
Глава 1
Математические модели психодинамики личности
Моделирование психических явлений явилось естественной реакцией ученых на указанную выше принципиальную рассеченность всякого психического явления по границе Это– Другое. А если учесть все многообразие человеческой психики в каждый момент ее реальной психодинамики со всем множеством проносящихся образов, мыслей, чувств (то, что Джеймс называл потоком сознания), то мы действительно попадаем как в расколотый мир, где всякий процесс какой-то своей частью ускользает из этого мира. Именно поэтому термин «модель», как подразумевающий неполноту нашего знания, является наиболее уместным для описания психических явлений. Не все модели в психологии являются математическими, также как и не всякий аппарат математического моделирования применим в психологической науке. В данной главе мы кратко опишем те модели, которые используются наиболее часто.
Теория абстрактных моделей является одним из важнейших и интенсивно развивающихся разделов современной алгебры. Ее формирование приходится на первые десятилетия двадцатого века и может быть рассмотрено как реакция на кризис математики начала нынешнего столетия. Как известно, большое внимание развитию и преодолению этого кризиса, коснувшегося не только математики, но и других точных наук, уделяли также философы и психологи. Неудивительно поэтому, что психологи и в дальнейшем проявляли большой интерес к развитию математики. Крупнейший представитель буржуазной психологии Жан Пиаже сделал попытку построения психологической теории человеческого интеллекта на основе привнесения в психологию некоторых алгебраических понятий и прежде всего понятий группы и полугруппы. Несмотря на справедливую критику отдельных сторон концепции Ж. Пиаже, мировой успех его работ общеизвестен. В отечественной науке преодоление кризисной ситуации в психологии было начато Л.С. Выготским, который не только дал критическую оценку работ Ж. Пиаже, но и, подвергнув анализу кризис науки начала века, заложил основы отечественной психологии, проанализировав их необходимость как единственно возможный выход из кризисного состояния. Осуществление этого преобразования рядом крупнейших советских ученых-психологов обеспечило создание развитой методологии психологической науки и среди других важных задач расчистило путь для формализации системы психологических понятий, для активного вовлечения в психологические исследования математических методов как средства более точного формулирования психологического знания.
1.1. Множества и отношения
Понятие множества является основным математическим понятием в том смысле, что любой объект математического исследования является множеством. Обратное, однако, неверно. Не любое множество может являться объектом математического исследования. Для того чтобы оно могло таковым стать, множество должно быть корректно задано. Таким образом, множество в отличие от других математических понятий не определяется через другие понятия, а задается. Корректное задание множества каких бы то ни было объектов является первым и наиважнейшим актом подготовки множества исследуемых объектов для их анализа с помощью автоматического аппарата. В качестве примера некорректно заданного множества приведем известный парадокс Бертрана Рассела. Что делать брадобрею, который получил приказ брить всех, кто не бреется сам? Вопрос заключается в том, должен ли брадобрей брить себя самого, т. е. относится ли он к множеству бреющихся самостоятельно или же к множеству тех, кого бреет брадобрей, т. е. он сам, но если он бреет себя сам, то он не должен бриться брадобреем, и т. д. В этом случае условие, задающее множество, не является корректным, так как не позволяет решить вопрос о том, содержится в нем указанный брадобрей или нет. Следовательно, множество является заданным корректно тогда и только тогда, когда условие, задающее множество, позволяет относительно любого элемента, принадлежащего любому, а следовательно, и данному множеству, однозначно ответить на вопрос: принадлежит этот элемент данному множеству или нет? Таким образом, задание множества позволяет относительно всех существующих в мире объектов формулировать однозначные высказывания о принадлежности любого из этих объектов заданному множеству. В противном случае множество не является корректно заданным и, следовательно, не является множеством в точном смысле этого слова.