Действительно, от того, насколько сложны клетки, ткани и организм в целом, просто дух захватывает, но при этом способ, которым записаны инструкции исходной ДНК, на удивление прост. Как и в большинстве известных нам знаковых информационных систем, таких, как язык, числа или бинарный код компьютера, важно не количество различных знаков, или букв, а та последовательность, в которой они расположены. В анаграммах, например «машинка» и «манишка», содержатся одни и те же буквы, только порядок их расположения немного различается, а в результате перед нами совершенно разные слова. Подобным образом 476 021 и 104 762 — совсем разные числа, которые обозначены одними и теми же цифрами, стоящими по-разному. Еще один пример: 001 010 и 100 100 имеют весьма разные значения в бинарном коде. Точно так обстоит дело и с порядком, в котором располагаются в ДНК четыре химические буквы. АЦГГТА и ГАЦАГТ — анаграммы ДНК, которые имеют совершенно разный смысл для клетки, так же, как «машинка» и «манишка» имеют разный смысл для нас.
Итак, как же записывается сообщение и как его читать? ДНК прикована к хромосомам, которые в свою очередь никогда не покидают пределов клеточного ядра. Всю работу выполняют белки. В организме они — исполнители. Это ферменты, которые переваривают пищу и обеспечивают обмен веществ, и гормоны, которые координируют процессы, происходящие в разных частях организма. Это коллагены кожи и костей, гемоглобины крови. Это антитела, которые сражаются с инфекцией. Другими словами, они делают все. Некоторые белки — это молекулы невероятных размеров, другие совсем невелики, но все белки имеют общее свойство, а именно то, что представляют они собой цепочку звеньев, которые называются аминокислотами. Порядок расположения аминокислот и определяет функции белка. Аминокислоты одной части молекулы притягивают к себе аминокислоты другой части, так симпатичная и простая линейная цепочка сворачивается и скручивается в комок. Но комок этот имеет строго определенную форму, которая позволяет белку выполнять свое предназначение: быть катализатором биологических реакций, если это фермент; строить мышечную ткань, если это мышечный белок; отлавливать проникшие в организм бактерии, если это антитело, и так далее. Всего имеется двадцать аминокислот, названия некоторых прекрасно известны — например, лизин или фенилаланин (он входит в состав искусственного подсластителя), о других большинство людей, если они не специалисты, возможно, никогда не слышали — например, цистеин или тирозин. Порядок, в котором расположены аминокислоты, точно определяет его окончательную форму и функцию, стало быть, для того чтобы построить белок, требуется лишь получить от ДНК инструкцию, определяющую этот порядок. Закодированная информация, содержащаяся внутри клеточного ядра в ДНК, должна каким-то образом быть передана в другую часть клетки, где происходит синтез белков.
Вырвите у себя один волосок, если не жалко. Полупрозрачный пузырек на одном его конце — это волосяная луковица, или фолликул. Один такой фолликул состоит примерно из миллиона клеток, единственное жизненное предназначение которых — строить волос, состоящий преимущественно из белка кератина. Когда вы выдернули волосок, клетки еще продолжали работать. Представьте себе, что находитесь внутри одной такой клетки. Все вокруг заняты производством кератина. Но как узнать, что нужно делать? Главное в создании молекул любого белка, в том числе и кератина,— это воспроизводить правильную последовательность аминокислот в них. Что такое правильная последовательность? Подойдем к ДНК, расположенной внутри клеточного ядра в хромосомах. Клетка волосяного фолликула, как и каждая клетка организма, располагает ДНК с полным набором инструкций, но нас интересует только кератин. Волосяным клеткам неинтересно, как воспроизводить кровь или кости, поэтому эти участки ДНК здесь отключены.