Выбрать главу

Тем не менее бить в литавры было рано. Вполне возможно, что это очередной «каприз природы» — небольшая линзочка, вероятно, единственная во всем этом огромном массиве.

Меренский упорно искал ее продолжение, снизу доверху рассекал склоны канавами, продвигаясь все дальше и на юг и на север, с удивлением убеждаясь, что привычные представления здесь не приложимы: слой продолжался, почти не меняясь ни по мощности, ни по содержанию. И везде он имел одинаковое пологое падение к центру массива. Это позволило геометрическим построением определить, где он должен быть обнажен в рельефе, сузить зону поиска.

За короткий срок этот слой, вскоре получивший название риф (горизонт) Меренского, был прослежен вдоль восточного контакта массива на 110 километров. Но и этим дело не ограничилось. Меренекий обнаружил «свой» горизонт и у юго-западной оконечности массива, там, где другие искатели ничего не нашли за многие годы. Он «протянул» горизонт в районе города Рюстеноурга на 230 километров (с перерывами) и еще на 60 километров вдоль северной границы массива. И везде на протяжении более 400 километров горизонт сохранял свое место в слоеном пироге магматических пород, имел мощность от 0,2 до 4 метров и среднее содержание 8-10 граммов на тонну. Бурение показало, что и на глубину он без изменений продолжается по крайней мере на 1000 метров. Даже в морских бассейнах редко слои имеют такое постоянство, а ведь этот возник из моря расплавленной магмы. Риф Меренского в специальной литературе обычно характеризуют как «самое уникальное образование среди всех магматических комплексов мира».

Бушвельдский массив основательно изучен, он представляет собой лополит площадью 40 тысяч квадратных километров, по сравнению с ним Садбери, его канадский родственник, выглядит карликом — в 20 раз меньше. Они во многом сходны, но имеют по строению и минерализации немало различий. Становление Бушвельдского массива продолжалось сотни миллионов лет, и медленность процесса обусловила его полную дифференциацию. Одну из самых спокойных ее стадий запечатлел горизонт Меренского, когда по всей площади массива произошло отложение хромита — окисла, затем при резком изменении геохимической обстановки накапливались платиноносные сульфиды — в пегматоидную фазу, характерную кристаллизацией минералов из газовых растворов, а после этого вновь отлагался хромит.

В центральной части Бушвельдского массива все эти образования были уничтожены внедрением гранитов, но и сохранившаяся часть грандиозна. К тому же установлено, что рифом Меренского платиновые богатства района не ограничены. Выше рифа, в районе Линденбурга, обнаружен двухметровый слой хромитита-породы, состоящей из хромита и оливина с тонкораспыленной платиной (до 18 граммов на тонну). Помимо таких сульфидных руд, сходных с норильскими, выявлены в Бушвельдском комплексе и «уральские», приуроченные к дунитам. В слоеном пироге нижней части массива есть пластообразные залежи с бедной вкрапленностью платины. Этот дунит обыкновенный, «уральский», зеленоватый, но кое-где известны трубчатые тела черного, железистого дунита, очень тяжелого и рудой богатого. Одна такая труба диаметром 18 метров уже отработана на глубину 300 метров при среднем содержании 16 граммов на тонну.

К северу от Бушвельдского массива, на территории Зимбабве, расположено еще одно геологическое чудо — Великая дайка, длиной почти 500 километров, шириной 5-10 километров. Почти прямая, она возвышается как стена над окружающей местностью на 50-300 метров и состоит из тех же пород, что и нижняя часть Бушвельдского массива. Кое-где в этой дайке за последние годы выявлены тонкие, но богатые платиной хромитовые слои.

Все эти открытия ознаменовали новую эпоху, но сделаны они были в трудных для освоения районах, а главное, извлечение платиноидов из сульфидных руд оказалось таким твердым орешком, что надежд на быстрый успех не осталось.

Разработано было множество технологических схем, но минералы-невидимки не желали сдаваться, для каждого рудного тела и даже для отдельных его зон были характерны свои минеральные ассоциации, и эти, казалось бы, незначительные различия существенно влияли на ход процессов обогащения.

На месторождении Садбери промышленное извлечение платиноидов началось лишь в 1934 году, после тридцатилетних экспериментов, и все же при очень низком коэффициенте извлечения.

И стало ясно: только глубокое изучение минералогии и технологических свойств платиновых руд может привести к успеху.

МИР МИНЕРАЛОВ

Все выявленные в первой половине XIX века платиновые минералы как бы подсказывали вывод о том, что в природе эти металлы образуют только сплавы между собой, с железом и в малой мере с золотом. Однако дальнейшие исследования показали, что мир платиновых минералов этим не ограничен.

На о. Борнео в 1886 году Веллер обнаружил лаурит — минерал, состоящий из рутения и серы — RuS2, черный, образующий изометрические кристаллы, очень твердый, хрупкий и химически стойкий, нерастворимый в кислотах. Долго не могли поверить, что его удельный вес всего-навсего 6,2 г/см3. После этого главный отличительный признак-уникальная тяжесть платиновых минералов-перестал быть абсолютной истиной! Возникло опасение, что во многих россыпях этот единственный рутениевый минерал прозевали, и он уходит при промывке в отвалы вместе с другими, ценности не представляющими.

Вслед за лауритом на медно-никелевых месторождениях Канады обнаружили хорошо кристаллизованный минерал, названный сперрилитом (в честь известного геолога Сперра), состоящий из платины и мышьяка- PtAs2, оловянно-белый, непрозрачный, легкоплавкий, но очень стойкий, сохраняющийся в россыпях.

Позднее, в 20-х годах нынешнего века, в платиновой руде Южной Африки обнаружили куперит PtS, бреггит (Pt, Pd, Ni)S, потарит PdHg, стибиопалладинит Pd3Sb, а на Урале-купроплатину (Pt, Fe, Cu), никелистую платину (Pt, Fe, Ni), ауроосмид (Ir, Os, Au).

В дальнейшем изучению платиноидов уделялось все больше внимания, но минералогических открытий это не приносило. Все сущее в природе уже было проверено на содержание этих элементов, и надеяться на новые открытия, казалось, нет оснований.

«Мертвый» период завершился во второй половине нашего века, когда достигли блестящих результатов в усовершенствовании традиционных способов анализа и создали множество новых, таких, как спектральный, спектрохимический и особенно микрорентгеноспектральный, позволяющие определять химический состав мельчайших-доли кубического микрометра! — зерен минералов непосредственно в руде. На выбранный под микроскопом участок поверхности шлифа направляют электронный зонд — сфокусированный поток электронов, возбуждающий рентгеновское излучение. Его характеристику запечатлевают на спектрограммах и по ним безошибочно определяют элементы, содержащиеся в облучаемом веществе.

Применение микрорентгеноспектрального анализа привело за последние два десятилетия к открытию примерно вдвое большего числа минералов, чем за всю предшествующую 150-летнюю историю их изучения, Если к 1950 году было известно 30 минералов группы платины, то теперь их насчитывают свыше 90.

Число известных минералов, в которых платина главный компонент, за этот период удвоилось — с 11 до 22, а рекордистом оказался палладий: до 1951 года было известно всего 6 его минералов, а теперь-30!

Почти все открытые за последний период минералы представляют собой соединения платиновых металлов с мышьяком, висмутом, теллуром, сурьмой, свинцом, оловом. При сложном составе, характерном для новых минералов, сохранить традицию-давать им названия по главным элементам-оказалось затруднительным, и распространение получили имена, имеющие географическую или мемориальную основу. Например, мончеит (Pt, Pd) (Те, Bi)2 назван по месту находки в Мончетундре, а звягинцевит (Pd, Pt)3(Pb, Sn), высоцкит (Pd, Ni)S, котульскит Pd(Te, Bi) — в честь исследователей О. Е. Звягинцева, Н. К. Высоцкого и В. С. Котульского.

Минералов, в которых главное место занимает родий, до наших дней вовсе не было известно, теперь таких два — холлингвортит RhAsS и рутениевый холлингвортит (Rh, Ru, Pt)AsS.