Рис. 22. Дифракция электронов.
Так же способны дифрагировать и атомы и молекулы!
А дифракция присуща, как мы знаем, именно волнам.
Разгадка этой новой, поистине замечательной тайны вещества позволила нам более правильно объяснить и строение атома.
Квантовая механика рисует движение электронов в атоме так: вращаясь вокруг ядра, электроны окружают его как бы «электронным облаком».
Плотность этого «облака» в разных местах различна. «Облако» гуще в тех точках пространства, где вероятность пребывания электрона больше.
Своеобразие такого подхода к решению вопроса объясняется тем, что микромир, мир электронов и атомных ядер, имеет свои особенности, отличающие его от окружающего нас, привычного нам, мира больших вещей.
Квантовая механика породила у ряда современных буржуазных физиков взгляды и выводы, далёкие от истинной науки.
Изучая пути движения электронов в атоме, физики не могут определить одновременно точное положение электрона и его скорость. Из этого некоторые реакционные физики и философы делают идеалистический, поповский, далёкий от науки вывод. Так, физики Гейзенберг и Бор утверждают, что раз мы не можем определить в одно и то же время точное положение электрона в атоме и его скорость и, таким образом, не можем сказать, по какому пути движется этот электрон, то, значит, движение электронов в атомах не является закономерным; оно не может быть познано нами вообще, так как электроны якобы обладают «свободой воли»!
Другие реакционеры идут еще дальше и утверждают, что электроны вообще не являются вещами, существующими вне нашего сознания; они не существуют независимо от нас и наших приборов.
Нечего и говорить, что эти вздорные, ненаучные взгляды поддерживают все противники передовой, материалистической науки. Ведь согласно таким взглядам наука бессильна объяснить окружающую действительность, человек никогда не сможет понять и объяснить отдельные явления природы. А это значит, что есть в мире те таинственные, необъяснимые «силы», на которых держатся все суеверия и религии.
Иное, действительно научное объяснение «поведению» электрона в атоме даёт наша материалистическая наука.
Мир необычайно малых частиц, как мы уже сказали, — мир особый. Поэтому мы не можем подходить к нему только с теми законами, к которым привыкли в мире больших вещей.
В мире малого имеются, кроме того, свои законы, свои закономерности.
Каковы эти законы? Пока мы их полностью не знаем. А то, что мы уже знаем, подчас не вяжется с нашими привычными представлениями.
Так именно и обстоит дело с дифракцией мельчайших частичек. Очевидно, что все эти частички движутся по каким-то своим законам, а не по законам хорошо известной нам механики, управляющей движением больших тел. Согласно этим особым законам движутся и электроны в атомах.
Мы стремимся при помощи опыта познать законы мира малого. Путь к этому один — дальнейшее изучение строения атома и главным образом его центральной части — ядра, в котором действуют ещё мало изученные ядерные силы. При изучении атомного ядра, можно надеяться, будут найдены и объяснены многие закономерности мира малых частиц.
По этому пути и идёт наука наших дней. И уже теперь, спустя немного лет после своего зарождения, ядерная физика достигла изумительных результатов.
Что же мы знаем о строении ядра в настоящее время и что это нам дало в применении к практической жизни?
3. К центру атома
Когда мы нагреваем воду, её невидимые частички — молекулы — с повышением температуры движутся всё быстрее и быстрее. Однако какого-либо нарушения внутреннего строения молекул при этом не происходит. Так бывает при любом физическом изменении тел — при их плавлении, испарении и т. д.
Если же происходит химическое изменение какого-либо тела, то при этом изменяются уже молекулы: они распадаются на атомы, и из последних образуются молекулы новых веществ; соединяясь по-новому, атомы образуют новые атомные группы, новые молекулы. Таким образом, говоря иными словами, все химические реакции связаны с движением электронов в атомах. Атомные же ядра не принимают в этом никакого участия. При любых химических превращениях с ядром ничего не случается — оно лишь переходит вместе с атомом из одного соединения в другое. Поэтому-то и не могли иметь успеха все многовековые попытки алхимиков превратить один элемент в другой химическим путём.
Не меняется атомное ядро и при таких воздействиях, как сильное сжатие, нагревание или обработка химических соединений различными растворителями.