Гипотеза всегда основывается на предположениях. Она может быть отвергнута, если хотя бы одно из предположений противоречит уже известным фактам. Нет ли таких противоречий в «водной»: гипотезе сопряжения?
К сожалению, есть. В предложенной схеме дыхание образует, а фосфорилирование нивелирует различие в количестве воды в двух отсеках, разделенных мембраной. Чтобы такая система работала, мембрана должна быть непроницаемой для воды. Если не выполнено это условие, избыток воды, образуемой слева от мембраны за счет дыхания, «утечет» на другую ее сторону, где воды меньше. В результате там количество воды повысится без всякого фосфорилирования, и энергия, выделившаяся при дыхании, будет безвозвратно потеряна.
Так вот, давно известно, что биологические мембраны проницаемы для воды. Они вообще не могут служить барьером для таких маленьких нейтральных молекул, как Н2О. Умозрительное построение «водной гипотезы» рушится!
Но может быть, из тех же блоков удастся создать что-нибудь более устойчивое?
Хемиосмотическая гипотеза
На, чем же мы споткнулись? На том, что мембраны — негодный барьер для воды, продукта дыхания и фосфорилирования. Но из чего получается вода, например, при фосфорилировании? Из иона водорода (Н+), отнятого от АДФ, и гидроксила (ОН-), отнятого от фосфата. Так ведь Н+ и ОН- — заряженные частицы, ионы, а для ионов мембраны, как правило, практически непроницаемы!
Химиосмотическая гипотеза
Итак, нам нужно, чтобы при синтезе АТФ получались не вода, а ионы Н+ и ОН-, да еще; по разные стороны мембраны.
Если бы теперь дыхание тоже образовывало не воду, а Н+ и ОН-, то можно; было бы так расположить ферменты в мембране, чтобы при дыхании ион Н+ выделялся слева от мембраны, а при фосфорилировании — справа от нее. Тогда окажется, что дыхание образует слева от мембраны кислоту, справа - щелочь, а процесс форфорилирования просто-напросто нейтрализует кислоту и щелочь!
Таким образом, реакция нейтрализации кислоты и щелочи, образованных дыханием, станет движущей силой процесса синтеза АТФ.
Чтобы завершить строительство «интеллектуального собора», - остается лишь догадаться, как именно дыхание образует кислоту и щелочь.
Известно, что окисление субстратов дыхания кислородом катализируется дыхательными ферментами. Они бывают двух типов, Одни присоединяют атомы водорода, другие присоединяют электроны. Если окислить донор водорода (AH2) ферментом — акцептором электронов (С), то одним из продуктов реакции окажутся ионы Н+:
AH2 + 2C → A + 2Ce- + 2H+
Если теперь восстановить кислород посредством Се-, то произойдет потребление ионов Н+:
2Ce- + O + 2H+ → 2C + Н2O.
Вот мы и свели концы с концами!
Такова хемиосмотическая гипотеза Митчела. Oна схематично изображена на рисунке.
Oкисление субстрата АН2 (реакция 1) ферментом — акцептором электронов, который не указан, чтобы не усложнять схему, происходит на левой поверхности мембраны. В результате электроны присоединяются к ферменту, а протоны уходят в воду.
Затем электроны переносятся ферментом на правую сторону мембраны и там восстанавливают молекулярный кислород или какой-нибудь другой акцептор водорода (в общей форме обозначен буквой В). Вещество В, присоединив электроны, связывает ионы Н+ справа от мембраны, превращаясь в ВН2.
Синтез АТФ (реакция 2) происходит таким образом, что два иона Н+ отщепляются от АДФ и фосфата справа от мембраны, компенсируя потерю двух Н+ при восстановлении вещества В. Один из кислородных атомов фосфата переносится на другую сторону мембраны и, присоединив два иона Н+ из левого отсека, образует ШО. Остаток фосфорила присоединяется к АДФ, давая АТФ.
По схеме Митчела, показанной на рисунке, роль дыхания в синтезе АТФ ограничивается созданием избытка Н+ на одной стороне мембраны по сравнению с другой ее стороной. Дыхание как бы сгущает, концентрирует ионы Н+ в одном из двух отсеков системы, разделенных мембраной. Это означает, что оно совершает осмотическую работу. Затем осмотическая энергия, накопленная в виде разности концентраций ионов Н+ между левым и правым отсеками, расходуется на химическую работу, то есть на синтез АТФ.