Выбрать главу

Давайте подумаем, почему ионы не проходят через мембрану в отстутствие веществ-переносчиков или специальных ионных каналов?

Все природные мембраны сделаны из жиров и «жирных» белков, то есть полипептидных цепей с высоким содержанием гидрофобных аминокислот. Итак, мебрана жирная. Ионы же в водном растворе окружены связанными молекулами воды («водной шубой»), и их сродство к жиру крайне низко. Именно поэтому мебрана — барьер для ионов.

Как же природа преодолевает эту трудность, столкнувшись с необходимостью повысить ионную проницаемость мебран? Обратимся к валиномицину, простейшему и наиболее изученному природному переносчику ионов (ионофору). Как показали академик Ю. Овчинников и его коллеги, валиномицин связывает ион калия своими гидрофильными карбонильными группами. При этом гидрофобные остатки аминокислот и оксикислот, образующих валиномицин, оказываются обращенными наружу, а калий занимает центральную полость молекулы антибиотика. Теперь калий окружен не водной шубой, а гидрофобными остатками, имеющими большое сродство к жиру. Так ион калия получает пропуск на вход в митохондрию.

Но такой пропуск нам не годится. Валиномицин очень разборчив в отношении иона-партнера и не связывает даже близкий по свойствам к калию ион натрия, Что уж говорить о неприродных ионах!

А если взять какое-нибудь синтетическое соединение, в котором заряд экранирован гидрофобными заместителями? Не обойдется ли такой ион без пропуска?

Е. Либерман завел свой старенький автомобиль и отправился по московским химическим институтам в поисках «чудо-иона», который, он был твердо уверен, пылится где-нибудь на полке у людей, не способных даже выговорить без запинки слово «фосфорилирование».

Вскоре Либерман вернулся к себе в подвал на Ленинском проспекте, 33, где в недрах одного из академических институтов у него была лабораторная комната. Портфель отяжелел от склянок с невиданными для биохимика веществами. Теперь уже его сотруднице Л. Цофиной пришлось встретиться с трудностями в произношении: «фенилдикарбаундекаборан...» Это анион, имеющий форму усеченного шара, сделанного из атомов бора. Кроме того, там есть фенильный остаток и отрицательный заряд, «размазанный» по всей этой ни на что природное не похожей молекуле, названной для краткости ФКБ-. А вот еще один анион: тетрафенилбор (ТФБ-). Он устроен попроще: четыре фенильных остатка, а в центре бор. Его «электрический антипод» — катион тетрафенилфосфоний (ТФФ+). Он построен так же, как ТФБ-, но вместо бора — фосфор, и в результате заряд «плюс».

— Почему вы взяли такое сложное для синтеза вещество, как ФКБ-? — спросил меня как-то сотрудник американской фирмы по производству реактивов, только что наладивший за океаном выпуск ФКБ- на продажу.

Я не стал его огорчать историей случайной находки ФКБ- и сказал, что это самый лучший среди проникающих синтетических анионов.

Либерман, Цофина и их сотрудники обнаружили, что искусственные мембраны практически не создают препятствия для движения ФКБ-. Несколько меньшей, но все же достаточно высокой проникающей способностью обладали также и кое-какие другие из реквизированных Либерманом ионов.

Но как поведут себя ионы-безбилетники в митохондриях? На этот вопрос вскоре смог дать ответ наш сотрудник А. Ясайтис. Оказалось, что они успешно заменяют калий и валиномицин в опытах «а lа Митчел и Мойл...».

Вскоре Либерман придумал простой метод измерения «чудо-ионов», и мы получили возможность непрерывно следить за концентрацией этих ионов в растворе.

Проникающие синтетические ионы вели себя в полном соответствии с предсказанием хемиосмотической гипотезы. При включении дыхания катионы послушно направлялись внутрь митохондрий, к минусу, а анионы наружу, к плюсу. Мы назвали это явление электрофорезом проникающих ионов (по аналогии с известным методом разделения заряженных веществ в электрическом поле). Но действительно ли дело в электрофорезе?

Что же, давайте еще раз проверим предсказательную силу «электрической» концепции.

Если обработать митохондрии ультразвуком, они распадутся на мелкие замкнутые пузырьки, окруженные как бы вывернутой наизнанку мембраной: в пузырьках грибовидные выросты АТФ-синтетазы смотрят наружу, в то время как в митохондриях они обращены внутрь. Изменение ориентации мембраны должно повлечь за собой и изменение направления электрического поля.

Опыт — и вновь удача! При дыхании или гидролизе АТФ наблюдалось поглощение анионов (а не катионов, как в опытах с митохондриями).