Но если такая схема верна, то калий-натриевый градиент должен продлить работоспособность клетки в условиях, когда исчерпаны энергетические ресурсы.
А. Глаголев и И. Броун проверили справедливость этого вывода. Был взят мутант кишечной палочки, лишенный протонной АТФ-синтетазы. Для такого мутанта окисление субстратов кислородом служит единственным энергетическим ресурсом, пригодным, чтобы образовать протонный потенциал. Как было показано в свое время Дж. Адлером и его сотрудниками, мутант подвижен, пока в среде есть кислород.
Глаголев и Броун повторили опыт Адлера и убедились, что исчерпание запаса кислорода в растворе действительно останавливает бактерии, если они находятся в среде с КСl. В этих условиях калий-натриевый градиент отсутствует: калия много и в клетках и в среде, а натрия нет ни там, ни здесь.
А теперь давайте возьмем среду с NaCl. В таких условиях должны быть оба интересующих нас градиента: калиевый (калия много внутри и мало снаружи) и натриевый (натрия много снаружи и мало внутри). Гипотеза предсказывала, что в такой ситуации подвижность сохранится какое-то время и в бескислородных условиях, поскольку возможно превращение энергии:
калий-натриевый градиент → протонный потенциал → вращение флагеллы.
И в самом деле, бактерии двигались еще 15—20 минут после того, как измерительное устройство зарегистрировало нулевой уровень СЬ в среде.
Но особенно наглядным, как и следовало ожидать, оказался опыт с солелюбивыми бактериями, которые транспортируют очень большие количества ионов К+ и Na+ , чтобы создать калий-натриевый градиент. Такие бактерии быстро останавливались в темноте в бескислородных условиях, если в среде был КСl, и все еще двигались спустя девять (!) часов, если КСl был заменен на NaCl.
Эта величина — девять часов — интересна прежде всего как иллюстрация объема того резервуара энергии, который представляет собой калий-натриевый градиент у солелюбивых бактерий. Кроме того, она приобретает особый смысл, если вспомнить о том, что солелюбивые бактерии располагают бактериородопсином и, стало быть, способны к превращению энергии света в протонный потенциал. Ясно, что такое превращение возможно лишь в светлый период суток. А как быть ночью? Так вот оказывается, что энергии, запасенной днем в виде калий-натриевого градиента, хватает на всю ночь.
Утверждение, что калий-натриевый градиент играет роль буфера протонного потенциала, позволяет понять не только биологическую функцию этого градиента, но и причину, которая в течение многих лет препятствовала выяснению его значения для жизнедеятельности клетки. Мысль о буферной роли калий-натриевого градиента не могла родиться, прежде чем был открыт протонный потенциал и было доказано, что он служит конвертируемой формой энергии. Все эти годы проблема калия и натрия просто ждала своего часа.
Электрический кабель цианобактерий
Другая проблема, долго дожидавшаяся своего срока, — это передача энергии вдоль мембраны. С самого начала хемиосмотической эпопеи мне казалось очевидным, что разность электрических потенциалов весьма удобна для транспорта энергии в пределах клетки. Дело в том, что система из двух солевых растворов, разделенных мембраной с ее свойствами превосходного изолятора, могла бы действовать в режиме электрического кабеля. Солевые растворы — проводники с очень низким сопротивлением, мембрана — структура, сопротивление которой очень высоко. Поэтому электрическое поле, созданное, например, переносом Н+ через мембрану в какой-то ее точке, должно немедленно распространиться по всей мембране.
Транспортабельность — необходимое свойство конвертируемой формы энергии. Поскольку разность электрических потенциалов является достоянием мембраны в целом, она должна объединять тысячи вмонтированных в нее генераторов и потребителей протонного потенциала в единую систему энергообеспечения бактерии, митохондрии или хлоропласта.
Все они имеют, как принято считать, микронные размеры. Расчет показывает, что передача потенциала на такие расстояния идет практически без потерь. Потери невелики и при значительно больших расстояниях - вплоть до нескольких миллиметров. Но есть ли столь протяженные мембранные образования, генерирующие протонный потенциал?
Электрический кабель цианобактерий
Аналогия мембраны с электрическим кабелем давно используется нейрофизиологами: распространение нервного импульса вдоль весьма протяженных мембран аксона происходит как по кабелю. Однако это передача сигнала, а не электрической мощности, которую необходимо использовать для совершения работы. Да и протонных генераторов нет в аксоне.