Декарт, независимо от своего соотечественника Пьера Ферма, является первооткрывателем аналитической геометрии, в основе которой лежит изобретенный им метод координат (декартовы координаты), позволяющий переводить геометрические образы на язык алгебры, т. е. уравнений.
Декарт путем введения символики улучшил теорию уравнений. Он, например, первый стал обозначать неизвестные через х, у, и z. Декарт разработал так называемый «метод неопределенных коэффициентов», который и сейчас находит широкое применение. Ему же принадлежит «правило знаков» (правило Декарта), руководствуясь которым можно подсчитать число положительных и отрицательных корней любого алгебраического уравнения.
Математические методы Декарта оказали плодотворное влияние на развитие математики и механики последующих веков, в особенности в первые 150 лет после смерти великого ученого.
Пьер Ферма (1601–1665)
Почти у каждого человека есть свое излюбленное занятие. В свободное от основной работы время одни занимаются коллекционированием, другие посещают книжные магазины и «вылавливают» по своему вкусу книги, а некоторые любят что-либо мастерить. Бывает и так, что математик увлекается художественной литературой и пишет стихи и, наоборот, поэт-профессионал время от времени занимается математикой. Так, Софья Ковалевская писала математические трактаты и находила время для стихов, а М. Ю. Лермонтов в минуты отдохновения от поэтических трудов занимался решением математических задач и составлял «математические шутки».
У французского юриста Пьера Ферма было свое «хобби». В часы отдыха от бесконечных судебных заседаний он любил решать математические задачи. И чем труднее была задача, тем настойчивее Ферма добивался ее решения. И каждый раз, когда получался нужный результат, он испытывал большое удовлетворение.
В математике Ферма был гениальным самоучкой. Чтобы решать трудные математические задачи, надо много знать. И юрист изыскивал время для изучения математических трактатов. На полях читаемых книг он делал свои пометки и тут же формулировал пришедшие на ум задачи и теоремы. Так, читая «Арифметику» древнегреческого ученого Диофанта Александрийского, на полях против того места, где рассматривается неопределенное уравнение x2+y2=z2, Ферма написал: «Между тем совершенно невозможно разложить полный куб на сумму кубов, четвертую степень — на сумму четвертых степеней, вообще какую-либо степень — на сумму двух степеней с тем же показателем. Я нашел удивительное доказательство этого предложения, но здесь слишком мало места, чтобы его поместить».
Так родилась «большая», или «великая», теорема Ферма: уравнение xn+yn = zn, где n — число целое и положительное, большее 2, не имеет решений в целых числах.
До сих пор остается загадкой, каким доказательством владел Ферма и владел ли? Дело в том, что, несмотря на все усилия крупнейших математиков, «великая» теорема Ферма в общем виде еще до сих пор не доказана и не опровергнута, хотя для отдельных n она доказана совершенно строго.
Так, для n=3 и n=4 теорема доказана петербургским академиком Эйлером (1707–1873), для n=5 — геттингенским математиком Дирихле (1805–1859). Профессор Берлинского университета Кумер (1810–1893) в результате новых разработанных методов довел решение до n=100. Наконец, в настоящее время американские математики, воспользовавшись методом Кумера, при помощи электронно-вычислительных машин доказали, что утверждение Ферма справедливо для всех п от 3 до 10 000 включительно.
Интересно заметить, что простота и легкость формулировки «великой» теоремы Ферма, доступная любому ученику средней школы, привели к тому, что появилось много желающих решить эту проблему. Интерес к проблеме Ферма подогревался еще и тем, что дармштадтский математик П. Вольфскель после своей смерти оставил Геттингенскому обществу наук капитал в 100 тысяч марок для передачи тому, кто решит эту теорему.
О последствиях, вызванных обещанной премией, хорошо сказал профессор Геттингенского университета Вальтер Литцман. «Раньше, — пишет он, — каждый более или менее известный математик, а в особенности редакторы математических журналов, время от времени получали „решения“ задачи о квадратуре круга или трисекции угла, хотя невозможность решения этих задач с помощью циркуля и линейки давно строго доказана. Теперь место этих задач заняла теорема Ферма, причем здесь служила приманкой не только слава, но и звонкая монета»[14].