Известно, что в трактате «Измерение круга» Архимед дал довольно точное значение числа?. Согласно вычислениям Архимеда, значение числа находится в границах:
Этот результат Архимед получил при вычислении периметра 96-угольника. Гюйгенс написал свой трактат «О квадратуре круга», в котором развил идеи Архимеда. Гюйгенс предложил более эффективный метод для приближенного вычисления числа, чем метод Архимеда. Так, результат, полученный Архимедом из рассмотрения 96-угольника, Гюйгенс получает из рассмотрения периметров 12-угольника и 6-угольника.
Еще на пять лет ранее двадцатилетний Гюйгенс под влиянием Архимедовой книги «О плавающих телах» написал свой трактат «О теории плавания тел», который по существу также явился дальнейшим развитием идей гениального Архимеда.
В расцвете своей научной деятельности Гюйгенс опубликовал еще одно математическое сочинение, посвященное молодой тогда науке — теории вероятностей. Тогда Гюйгенсу было 28 лет.
Научное творчество Гюйгенса не ограничивается одной только математикой. Он прославил свое имя также глубокими работами в области механики и астрономии. Так, при помощи превосходных рефракторов собственной конструкции и изготовления он открывает кольцо Сатурна и исследует его.
Эти его наблюдения и выводы описаны Гюйгенсом в работе «Система Сатурна». В ней ученый подчеркнул свое признание гелиоцентрической системы мира. Здесь же Гюйгенс дал первое описание туманности в созвездии Ориона и сообщил о полосах на поверхностях Юпитера и Марса.
В области практической механики изобретает знаменитые часы с маятником и пишет по этому вопросу большое сочинение (в 4 томах).
Последние два открытия принесли голландскому ученому особенно большую славу и сделали его европейской знаменитостью. Тогда Гюйгенсу не было еще и 30 лет.
Опубликованные работы Гюйгенса составляют 22 тома. Из них первые 10 томов включают переписку, а остальные 12 посвящаются математике, механике, оптике, астрономии.
Алексис Клеро (1713–1765)
Вызывает удивление яркое математическое дарование знаменитого французского математика Алексиса Клода Клеро. Невероятно, но факт, что юный Клеро уже к 12 годам сложился как ученый. В этом возрасте он написал солидную работу, посвященную исследованию алгебраических кривых четвертого порядка. Она была напечатана в сборнике Берлинской академии наук.
Далее молодой Клеро занялся изучением некоторых свойств так называемых линий двоякой кривизны. Если на прямоугольном листе бумаги провести диагональ и затем этот лист свернуть в цилиндр, то упомянутая диагональ превратится в так называемую «винтовую линию». Винтовая линия является примером линии двоякой кривизны, т. е. линии, которая располагается не на плоскости, а в пространстве. Вот о таких линиях шестнадцатилетний Клеро и написал свое новое исследование, давшее ему славу знаменитого математика.
Геометрические работы молодого Клеро получили высокую оценку со стороны Парижской академии наук, и, когда ученому исполнилось 18 лет, она избрала его в число своих академиков.
Интересно заметить, что у Алексиса Клода Клеро был младший брат, который, как и он, рано обнаружил математическое дарование. В возрасте 14 лет он написал исследование по некоторым вопросам геометрии, которое было одобрено Парижской академией наук и напечатано в ее трудах. Он, как и его старший брат, несомненно, был бы крупным математиком, если бы не преждевременная смерть, скосившая его в 17 лет.
Научные +руды Алексиса Клеро вошли в золотой фонд мировой науки. Клеро выполнил весьма важные исследования по высшей математике. Он принял участие в работе экспедиции по измерению Дуги меридиана и написал трактат «Теория фигуры Земли, основанная на началах гидростатики». За астрономическую работу по теории движения Луны Петербургская академия наук удостоила ученого премии и избрала своим почетным членом.
Ряд фундаментальных трудов Клеро относится к математическому анализу. Он первый, например, ввел понятия криволинейного интеграла, общего и особого решения дифференциального уравнения первого порядка, полного дифференциала функции нескольких независимых переменных и т. д. Многие результаты Клеро по математическому анализу являются классическими и вошли в учебную литературу на правах обязательного материала для изучения в высших учебных заведениях.