Как математически определяются частоты звуков нот? Сейчас мы знаем, что октава (от “до” до “до” следующей октавы) - это умножение частоты на 2 (или укорочение струны в 2 раза). Для остальных нот с 18 века используется так называемый “хорошо темперированный строй”: октава делится на 12 равных промежутков, а последовательность частот образует геометрическую прогрессию.
Для одной октавы получаются следующие коэффициенты: 1,0594, 1,1224, 1,1892, …, 2. На клавиатуре они отображаются всем известным образом, образуя 12 полутонов:
Таким образом, если знать частоту любой ноты, все остальные легко рассчитываются по вышеприведенной формуле.
Очевидно, что “базовая” частота может быть любой. Традиционно принято например, что частота камертона ноты “Ля” 440Гц. Остальные ноты первой октавы:
ДО
261.6
ДО#
277
РЕ
293.7
РЕ#
311
МИ
329.6
ФА
349.2
ФА#
370
СОЛЬ
392
СОЛЬ#
415
ЛЯ
440
ЛЯ#
466
СИ
494
Интересно заметить, что квинта в этой системе имеет соотношение частот 27/12 = 1.49, что чуть-чуть отличается от “пифагорейского” чистого тона с соотношением 1.5. На слух “современная квинта” имеет небольшие биения 0,5Гц, соответствующие разности частот 392 - 392.4. До сих пор есть любители исполнения старинной музыки в квинто-терцевом строе, называемым “чистым”. В 18м же веке дебаты между приверженцами “старого” и “нового” строя были довольно-таки острыми. Впрочем, преимущества равномерно темперированного строя в виде четкого соотношения между частотами нот и возможности транспонирования музыки в любую другую тональность “без потери качества” оказались решающими. Сейчас “чистый строй” имеет лишь историческое значение, и используется лишь иногда для исполнения старинных произведений.
И традиционно, программа на языке Python, выводящая частоты полутонов в обе стороны от ноты “Ля”:
import math
freq_la = 440
for p in range(-32,32):
freq = freq_la*math.pow(2, p/12.0)
print(p, freq)
11. Вращение планет
Еще в древней Греции ученые знали, что планеты движутся по небу, но каким образом? Сотни лет господствовала геоцентрическая система мира - в центре была Земля, вокруг которой по окружностям двигались Луна, планеты (на то время их было известно 5) и Солнце:
Такая система казалась вполне логичной и интуитивно понятной (даже сейчас люди говорят что солнце “всходит” и “заходит”), однако не объясняла астрономам почему планеты движутся по небу неравномерно, и временами даже в обратную сторону.
Вот так, к примеру, выглядит перемещение по небу планеты Марс, что никак не укладывается в теорию движения по кругу:
Впрочем геоцентрическая система просуществовала более 1500 лет, только в 16м веке Коперник издал свой труд «О вращениях небесных сфер», где описывал вращение планет по круговым орбитам вокруг Солнца. Однако проблемой было то, что и при этой схеме фактические движения планет не совпадали с расчетными.
Объяснить это не мог никто, пока в 1600 году немецкий математик Иоганн Кеплер не стал изучать многолетние результаты наблюдений, сделанные астрономом Тихо Браге. Кеплер был великолепным математиком, но и у него ушло несколько лет чтобы понять суть и вывести законы, которые и сейчас называются законами Кеплера.
Как оказалось, движение планет подчиняется 3м математическим законам:
1) Планеты движутся по эллиптическим орбитам, в одном из фокусов эллипса находится Солнце
2) Планеты движутся неравномерно: скорость планеты увеличивается при движении к Солнцу и уменьшается в обратном направлении. Но за равные промежутки времени вектор движения описывает равные площади: площади участков “А” одинаковы:
3) Квадраты периодов обращений планеты пропорциональны кубу расстояний до орбиты:
Кеплер считал, что весь мир подчиняется гармонии, и что солнечная система больше похожа на часовой механизм, чем на божественное творение. Найденные им законы не только красивы и гармоничны, но и совпали с реальными наблюдениями (уже позже выяснилось, что законы Кеплера могут быть выведены из законов Ньютона и закона всемирного тяготения, желающие могут найти доказательства в Википедии).