Выбрать главу

27. Можно ли выиграть в азартные игры?

Одним из “классических” примеров использования теории вероятности являются азартные игры. Собственно, многие из статистических расчетов изначально и возникли из-за желания понять такие процессы, как например, бросание кубика. Посмотрим, какова вероятность выиграть в ту или иную азартную игру.

Игральные кости

Самый наверное, интуитивно простой и понятный вариант - есть кубик с метками от 1 до 6, и вероятность выпадения того или иного числа равна 1/6.

Но играть таким способом было бы скучно, поэтому популярны игры с более сложными правилами. Популярной азартной игрой является крэпс, на рисунке приведена картинка игрового стола. Как можно видеть, там много всего, но мы не будем вдаваться в глубокие тонкости.

Каждый ход игры состоит из бросания двух кубиков, набранные очки суммируются. Как написано в статье http://www.vokrugsveta.ru/article/215452/ “Правила игры незамысловаты: игрок кидает две кости, и, если сумма очков на них равна 7 или 11, он выигрывает, если 2, 3 или 12 — проигрывает. Когда на кубиках выпадает другая сумма, шутер бросает их до выигрышной или проигрышной комбинаций”.

Посмотрим, сколько можно выиграть таким способом. Для этого необязательно идти в казино, для симуляции игры воспользуемся Python. Напишем функцию для одного броска:

import random

def shoot():

return random.randint(1,6) + random.randint(1,6)

Напишем функцию симуляции одного хода по вышеописанным правилам.

def move():

while True:

val = shoot()

print("Dice rolclass="underline" ", val)

if val == 7 or val == 11:

return True

if val == 2 or val == 3 or val == 12:

return False

Зададим нашему виртуальному игроку начальную сумму в 100 у.е., и запустим процесс игры. Пусть наш игрок сделает 100 ставок, каждый раз по 1у.е.

money_total = 100

win = 0

loose = 0

for p in range(100):

bet = 1

step = move()

if step is True:

money_total += bet

win += 1

else:

money_total -= bet

loose += 1

print("Win", win, "Loose", loose, "Money", money_total)

Запускаем симуляцию 100 игр и удивляемся результату, игрок выиграл, причем с заметным отрывом побед от поражений: Win 63, Loose 37, Money 126.

Увеличиваем число игр до 1000 и запускаем еще раз, игрок опять выиграл: Win 680, Loose 320, Money 460.

Понятно, что что-то здесь не так - игра, в которой игрок был бы всегда в плюсе, вряд ли была бы популярной в казино, оно бы просто разорилось. Попробуем разобраться.

Интуитивно кажется, что при бросании кубика вероятность выпадения любой грани равновероятна. И это действительно так, но в случае одного кубика. Если кубиков два, то все становится гораздо сложнее. К примеру, число 7 может выпасть как 3+4, 2+5, 1+6, а вот число 12 может выпасть только в виде комбинации 6+6.

Построим в Jupyter notebook график выпадения сумм от 1 до 12 для 100 бросков:

from matplotlib import pyplot as plt

%matplotlib inline

y = [ shoot() for v in range(100) ]

plt.hist(y)

Предположение подтвердилось, и суммы из центра действительно выпадают чаще. Таким образом, числа 7 и 11 действительно выпадают чаще чем 2,3 или 12. И вероятность получить выигрышную комбинацию “7 или 11” действительно выше.

Как такое может быть? Увы, ответ прост - автор процитированной выше статьи просто не разобрался досконально в правилах игры. Текст “правила игры незамысловаты: игрок кидает две кости, и, если сумма очков на них равна 7 или 11, он выигрывает, если 2, 3 или 12 — проигрывает” весьма далек от правды, и правила совсем не так незамысловаты как кажутся.

Реальные правила для ставки на pass line оказались несколько сложнее (есть и другие виды ставок, желающие могут разобраться самостоятельно).

Ход-1: Делается бросок. Если выпадает 7 или 11, игрок выигрывает, если 2, 3 или 12, игрок проигрывает. Если выпадает другое число, оно запоминается под названием point.

Ход-2: Делается бросок. Если выпадает 7, то игрок проиграл. Если выпадает point то игрок выиграл. Если выпадают другие числа, ход повторяется (в это время игроки могут также делать ставки на другие числа).

Действительно, все чуть сложнее, чем описывалось в изначальном варианте. Допишем функцию симуляции с учетом более точных правил.

def move():

point = 0

while True: