Выбрать главу

Умножение в уме числа на 11

Рассмотрим простой пример:

26*11 = 286

Сделать это в уме просто, если взять сумму чисел и поместить в середину:

26*11 = 2 [ 2+6 ] 6

Аналогично 43*11 = 473, 71*11 = 781 и так далее.

Чуть длиннее расчет, если сумма чисел больше либо равна 10. Но и тогда все просто: в середину кладется младший разряд, а 1 уходит в старший разряд:

47*11 = [4] [4+7=11] [7] = [4+1] [1] [7] = 517

94*11 = [9] [9+4=13] [4] = [10] [3] [4] = 1034

Возведение в квадрат числа, оканчивающегося на 5

Подсчитать это тоже просто. Если число рассмотреть как пару NM, то первая часть результата - это число N, умноженное на (N+1), вторая часть числа - всегда 25.

352 = [3*4] [25] = 12 25

Аналогично:

252 = [2*3] 25 = 625      852 = [8*9] 25 = 7225 и так далее.

Отгадывание результата

Попросим человека загадать любое число. Например 73. Затем чтобы еще больше запутать отгадывающего, попросим сделать следующие действия:

удвоим число (146)

прибавляем 12 (158)

разделим на 2 (79)

вычтем из результата исходное число (79-73 = 6)

В конце мы отгадываем, что результат - 6. Суть в том, что число 6 появляется независимо от того, какое число загадал человек.

Математически, это доказывается очень просто:

(2*n + 12)/2 - n = n + 6 - n = 6, независимо от значения n.

Отгадывание чисел

Есть другой фокус с отгадыванием чисел. Попросим человека загадать трехзначное число, числа в котором идут в порядке уменьшения (например 752). Попросим человека выполнить следующие действия:

записать число в обратном порядке (257)

вычесть его из исходного числа (752 - 257 = 495)

к ответу добавить его же, только в обратном порядке (495 + 594)

Получится число 1089, которое “фокусник” и объявляет публике.

Математически это тоже несложно доказать.

Любое число вида abc в десятичной системе счисления представляется так:

abc = 100*a + 10*b +c.

Разность чисел abc - cba:

100*a + 10*b +c + 100 - 100*c-10*b - a = 100*a - 100*c - (a - c) = 100*(a-c) - (a-c)

Т.к. по условию a - c > 0, то результат можно записать в виде:

100*(a-c) - (a-c) = 100*(a-c) - 100 + 90 + 10 - (a-c) = 100*(a-c-1) + 10*9 + (10-a+c)

Мы узнали разряды числа, получающегося в результате:

a1=a-c-1, b1 = 9, c1 =10-a+c

Добавляем число в обратном порядке:

a1b1c1 + c1b1a1 = 100*(a-c-1) + 10*9 + (10-a+c) + 100* (10-a+c) + 10*9 + a-c-1

Если раскрыть все скобки и сократить лишнее, в остатке будет 1089.

Еще один несложный фокус с угадыванием чисел весьма популярен в Интернете. Его описание проще привести в виде скриншота страницы:

Неподготовленный зритель недоумевает, как квадрат “угадывает” число, хотя принцип очень прост, и объясняется школьной арифметикой. Если вычесть из любого числа xy составляющие его числа, результат будет равен 10*x + y - x - y = 9*x. Т.е. какое бы число не загадал зритель, результат всегда будет соответствовать номерам 9, 18, 27 и пр. Эта картинка и показывается при клике на черном квадрате.

3. Число Пи

Вобьем в стену гвоздь, привяжем к нему веревку с карандашом, начертим окружность. Как вычислить длину окружности? Сегодня ответ знает каждый школьник - с помощью числа Пи. Число Пи - несомненно, одна из основных констант мироздания, значение которой было известно еще в древности. Оно используется везде, от кройки и шитья до расчетов гармонических колебаний в физике и радиотехнике.

Сегодня достаточно нажать одну кнопку на калькуляторе, чтобы увидеть его значение:

Pi = 3.1415926535… Однако, за этими цифрами скрывается многовековая история. Что такое число Пи? Это отношение длины окружности к ее диаметру. То что это константа, не зависящая от самой длины окружности, знали еще в древности. Но чему она равна? Есть ли у этого числа какая-то внутренняя структура, неизвестная закономерность? Узнать это хотели многие. Самый простой и очевидный способ - взять и измерить. Примерно так вероятно и поступали в древности, точность разумеется была невысокой. Еще в древнем Вавилоне значение числа Пи было известно как 25/8. Затем Архимед предложил первый математический метод вычисления числа Пи, с помощью расчета вписанных в круг многоугольников. Это позволяло вычислять значение не «напрямую», с циркулем и линейкой, а математически, что обеспечивало гораздо большую точность. И наконец в 3-м веке нашей эры китайский математик Лю Хуэй придумал первый итерационный алгоритм — алгоритм, в котором число вычисляется не одной формулой, а последовательностью шагов (итераций), где каждая последующая итерация увеличивает точность. С помощью своего метода Лю Хуэй получил Пи с точностью 5 знаков: π = 3.1416. Дальнейшее увеличение точности заняло сотни лет. Математик из Ирана Джамшид ибн Мас‘уд ибн Махмуд Гияс ад-Дин ал-Каши в 15-м веке вычислил число Пи с точностью до 16 знаков, а в 17-м веке голландский математик Лудольф вычислил 32 знака числа Пи. В 19-м веке англичанин Вильям Шенкс, потратив 20 лет, вычислил Пи до 707 знака, однако он так и не узнал, что в 520-м знаке допустил ошибку и все последние годы вычислений оказались напрасны (в итерационных алгоритмах хоть одна ошибка делает все дальнейшие шаги бесполезными).