Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:
- Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.
- Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.
- Число Пи является бесконечным.
- Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой “магии” тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.
И наконец, перейдем к формулам вычисления Пи, т.к. именно в них можно увидеть красоту числовых взаимосвязей - то, чем интересна математика.
Формула Лю-Хуэя (3й век):
Формула Мадхавы-Лейбница (15 век):
Формула Валлиса (17 век):
Формула Мэчина (18 век):
Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:
sum = 0.0
sign = 1
for p in range(0, 33):
sum += 4.0*sign/(1 + 2*p)
print(p, sum)
sign = -sign
Запустим программу в любом онлайн-компиляторе языка Питон (например https://repl.it/languages/python3). Получаем результат:
Шаг Значение
0 4.0
1 2.666666666666667
2 3.466666666666667
3 2.8952380952380956
4 3.3396825396825403
5 2.9760461760461765
6 3.2837384837384844
7 3.017071817071818
8 3.2523659347188767
9 3.0418396189294032
10 3.232315809405594
11 3.058402765927333
12 3.2184027659273333
13 3.0702546177791854
14 3.208185652261944
15 3.079153394197428
16 3.200365515409549
17 3.0860798011238346
18 3.1941879092319425
19 3.09162380666784
20 3.189184782277596
21 3.0961615264636424
22 3.1850504153525314
23 3.099944032373808
24 3.1815766854350325
25 3.1031453128860127
26 3.1786170109992202
27 3.1058897382719475
28 3.1760651768684385
29 3.108268566698947
30 3.1738423371907505
31 3.110350273698687
32 3.1718887352371485
Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков:
Попробуем воспроизвести ее в виде программы, чтобы примерно оценить объем вычислений.
Первым шагом необходимо вычислить √12. Возникает резонный вопрос - как это сделать? Оказывается, уже в Вавилоне был известен метод вычисления квадратного корня, который сейчас так и называется “вавилонским”. Суть его в вычислении √S по простой формуле:
Здесь x0 - любое приближенное значение, например для √12 можно взять 3.
Запишем формулу в виде программы:
from decimal import Decimal
print ("Квадратный корень:")
number = Decimal(12)
result = Decimal(3)
for p in range(1, 9):
result = (result + number/result)/Decimal(2)
difference = result**2 - number
print(p, result, difference)
sqrt12 = result
Результаты весьма интересны:
Шаг Значение Погрешность
1 3.5 0.25