Выбрать главу

Что мы знаем о числе Пи сегодня? Действительно, это число весьма интересно:

Число Пи является иррациональным: оно не может быть выражено с помощью дроби вида m/n. Это было доказано только в 1761 году.

Число Пи является трансцендентным: оно не является корнем какого-либо уравнения с целочисленными коэффициентами. Это было доказано в 1882 году.

Число Пи является бесконечным.

Интересное следствие предыдущего пункта: в числе Пи можно найти практически любое число, например свой собственный номер телефона, вопрос лишь в длине последовательности которую придется просмотреть. Можно подтвердить, что так и есть: скачав архив с 10 миллионами знаков числа Пи, я нашел в нем свой номер телефона, номер телефона квартиры где я родился, и номер телефона своей супруги. Но разумеется, никакой “магии” тут нет, лишь теория вероятности. Можно взять любую другую случайную последовательность чисел такой же длины, в ней также найдутся любые заданные числа.

И наконец, перейдем к формулам вычисления Пи, т.к. именно в них можно увидеть красоту числовых взаимосвязей - то, чем интересна математика.

Формула Лю-Хуэя (3й век):

Формула Мадхавы-Лейбница (15 век):

Формула Валлиса (17 век):

Формула Мэчина (18 век):

Попробуем вычислить число Пи по второй формуле. Для этого напишем простую программу на языке Python:

sum = 0.0

sign = 1

for p in range(0, 33):

sum += 4.0*sign/(1 + 2*p)

print(p, sum)

sign = -sign

Запустим программу в любом онлайн-компиляторе языка Питон (например https://repl.it/languages/python3). Получаем результат:

Шаг      Значение

0       4.0

1       2.666666666666667

2       3.466666666666667

3       2.8952380952380956

4       3.3396825396825403

5       2.9760461760461765

6       3.2837384837384844

7       3.017071817071818

8       3.2523659347188767

9       3.0418396189294032

10       3.232315809405594

11       3.058402765927333

12       3.2184027659273333

13       3.0702546177791854

14       3.208185652261944

15       3.079153394197428

16       3.200365515409549

17       3.0860798011238346

18       3.1941879092319425

19       3.09162380666784

20       3.189184782277596

21       3.0961615264636424

22       3.1850504153525314

23       3.099944032373808

24       3.1815766854350325

25       3.1031453128860127

26       3.1786170109992202

27       3.1058897382719475

28       3.1760651768684385

29       3.108268566698947

30       3.1738423371907505

31       3.110350273698687

32       3.1718887352371485

Как можно видеть, сделав 32 шага алгоритма, мы получили лишь 2 точных знака. Видно что алгоритм работает, но количество вычислений весьма велико. Как известно, в 15м веке индийский астроном и математик Мадхава использовал более точную формулу, получив точность числа Пи в 11 знаков:

Попробуем воспроизвести ее в виде программы, чтобы примерно оценить объем вычислений.

Первым шагом необходимо вычислить √12. Возникает резонный вопрос - как это сделать? Оказывается, уже в Вавилоне был известен метод вычисления квадратного корня, который сейчас так и называется “вавилонским”. Суть его в вычислении √S по простой формуле:

Здесь x0 - любое приближенное значение, например для √12 можно взять 3.

Запишем формулу в виде программы:

from decimal import Decimal

print ("Квадратный корень:")

number = Decimal(12)

result = Decimal(3)

for p in range(1, 9):

result = (result + number/result)/Decimal(2)

difference = result**2 - number

print(p, result, difference)

sqrt12 = result

Результаты весьма интересны:

Шаг      Значение             Погрешность

1       3.5                   0.25