Выбрать главу

Много лет полагали, что впервые металлический титан был получен в 1825 году знаменитым шведским ученым Берцелиусом при восстановлении фтортитаната калия металлическим натрием. Однако сегодня, сравнивая свойства титана и продукта, полученного Берцелиусом, можно утверждать, что президент шведской Академии наук ошибался, ибо чистый титан быстро растворяется в плавиковой кислоте (в отличие от многих других кислот), а «титан» Берцелиуса успешно сопротивлялся ее действию.

Лишь в 1875 году русский ученый Д. К. Кириллов сумел получить металлический титан.

Результаты этих работ Д. К. Кириллов опубликовал в брошюре «Исследования над титаном».

Но в условиях царской России этот замечательный труд никого не заинтересовал и поэтому остался незамеченным.

В 1887 году довольно чистый продукт - около 95% титана - получили соотечественники Берцелиуса Нильсон и Петерсон, восстанавливавшие четыреххлористый титан металлическим натрием в стальной герметичной бомбе.

Следующий шаг на пути к чистому титану сделал в 1895 году французский химик Анри Муассан, который восстанавливал двуокись титана углеродом в дуговой печи и затем подвергал полученный металл двукратной рафинировке. Его титан содержал всего 2% примесей.

Наконец, в 1910 году американский химик Хантер, усовершенствовав способ Нильсона и Петерсона, сумел получить несколько граммов сравнительно чистого титана. Это событие вызвало широкие отклики в различных странах. Именно поэтому многие до сих пор ошибочно приписывают Хантеру, а не Кириллову приоритет выделения титана в чистом виде.

Итак, чистый титан был получен. Но чистым он мог считаться с большой натяжкой, так как все же содержал несколько десятых долей процента примесей. Всего несколько десятых... Но «ложка дегтя портит бочку меда». Примеси делали титан хрупким, непрочным, не поддающимся механической обработке. О нем пошла дурная слава как о бесполезном металле, не пригодном ни для каких целей.

Разумеется, с такой характеристикой титан не мог и мечтать об ответственной работе. Приходилось довольствоваться второстепенными ролями.

Еще в 1908 году Розе и Бартран в США, а Фаруп в Норвегии предложили изготовлять белила не из соединений свинца, как делалось прежде, а из двуокиси титана. По своим качествам титановые белила значительно превосходили свинцовые. К тому же титановые белила не ядовиты (бич свинцовых белил), поскольку двуокись титана безвредна для человеческого организма. Медицине известен случай, когда некий гражданин проглотил за один раз почти пол килограмма двуокиси титана, и это не привело к печальным последствиям.

Со временем двуокись титана стали применять при окрашивании кож, тканей, в производстве стекла, фарфора, эмали, для изготовления искусственных бриллиантов.

Нашлась работа и для другого титанового соединения - четыреххлористого титана, впервые полученного французским химиком Дюма еще в 1826 году. Способность хлорида титана интенсивно образовывать маскирующие дымовые завесы широко использоралась в период первой мировой войны. В мирные же годы это соединение служит для окуривания растений во время весенних заморозков.

Но титан, как мы увидим далее, вправе был претендовать на более серьезную и интересную работу.

И вот, наконец, в 1925 году голландские ученые ван Аркель и де Бур разложением четыреххлористого титана на раскаленной вольфрамовой проволоке получили титан очень высокой чистоты. Вот тогда-то оказалось, что утверждение Хантера о хрупкости титана не выдерживает никакой критики, поскольку металл, полученный ван Аркелем и де Буром, обладал очень высокой пластичностью: его можно было ковать на холоде, как железо, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу.

Теперь гордое имя, которое носил элемент, никому уже не казалось, как прежде, ироническим - перед ним открылась широкая дорога в мир техники.

Словно в благодарность за освобождение из плена примесей титан начал изумлять ученых своими чудесными свойствами. Выяснилось, например, что титан, который почти вдвое легче железа, оказался прочнее многих сталей.

По удельной прочности титан не имеет соперников среди промышленных металлов. Даже такой металл, как алюминий, уступил ряд позиций титану, который всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее. И что особенно важно, титан сохраняет свою прочность при высоких температурах (до 500°С, а при добавке легирующих элементов - до 650°С), в то время как прочность большинства алюминиевых сплавов резко падает уже при 300°С.