Выбрать главу

Из смеси порошка металлического циркония с горючими соединениями изготовляют осветительные ракеты, дающие большое количество света. Циркониевая фольга при горении дает в полтора раза больше света, чем алюминиевая. "Вспышки" с циркониевым заполнением удобны тем, что занимают совсем мало места — они могут быть величиной с наперсток. К циркониевым сплавам все внимательнее присматриваются конструкторы ракетной техники: вполне возможно, что из жаропрочных сплавов этого элемента будут выполнены передние кромки космических кораблей, предназначенных для регулярных рейсов в просторах вселенной.

Дождевые плащи обязаны своей влагонепроницаемостью солям циркония, которые входят в состав особой эмульсии для пропитки тканей. Соли циркония применяют также для изготовления цветных типографских красок, специальных лаков, пластических масс. В качестве катализатора соединения циркония используют при производстве высокооктанового моторного топлива. Сернокислые соединения этого элемента славятся отличными дубильными свойствами.

Полезное применение нашел тетрахлорид циркония. Электропроводность пластинки из этого вещества меняется в зависимости от давления, которое на нее действует. Это свойство и было использовано в конструкции универсального манометра — прибора для измерения давления. При малейшем изменении давления изменяется и сила тока в цепи прибора, шкала которого отградуирована в единицах давления. Эти манометры очень чувствительны: с их помощью можно определять давление от стотысячных долей атмосферы до тысяч атмосфер.

Для многих радиотехнических приборов — ультразвуковых генераторов, стабилизаторов частоты и других — нужны так называемые пьезокристаллы. В некоторых случаях им приходится работать при повышенных температурах. С этой точки зрения несомненный интерес представляют кристаллы цирконата свинца, которые практически не меняют своих пьезоэлектрических свойств до 300 °C.

Рассказывая о цирконии, нельзя не упомянуть о его оксиде — одном из самых тугоплавких веществ природы: температура плавления его — около 2900 °C. Оксид циркония широко используют при получении высокоогнеупорных изделий, жаростойких эмалей, тугоплавких стекол. Еще более тугоплавкий материал — борид этого металла. Из него изготовляют чехлы для термопар, которые могут находиться в расплавленном чугуне непрерывно в течение десяти-пятнадцати часов, а в жидкой стали два-три часа (кварцевые чехлы выдерживают лишь одно-два погружения не более чем на 20–25 секунд).

Оксид циркония обладает интересным свойством: сильно нагретый, он излучает свет настолько интенсивно, что может быть использован в осветительной технике. Это свойство подметил еще в конце прошлого века известный немецкий физик Вальтер Герман Нернст. В сконструированной им лампе (вошедшей в историю техники как лампа Нернста) стержни накаливания были изготовлены из оксида циркония. В лабораторных опытах это вещество и сейчас иногда применяют в качестве источника света.

Добрым словом вспоминают оксид циркония ученые Физического института им. П.Н. Лебедева Академии наук СССР (ФИАН): на основе оксидов циркония и гафния им удалось создать удивительные кристаллы, которых нет в природе. Фианиты — так стали называть эти рукотворные самоцветы — не только быстро завоевали признание ювелиров, но и обрели большую популярность в мире науки и техники. Достаточно отметить тот факт, что они успешно справляются с ролью лазерных материалов.

А вот французские ученые используют оксид циркония как исходный материал для получения этого металла с помощью солнечной энергии. Еще в 50-х годах в Монлуи — крепости, построенной в XVII веке в Восточных Пиренеях на высоте 1500 метров над уровнем моря, была сооружена солнечная печь, спроектированная группой исследователей под руководством профессора Феликса Тромба. На состоявшемся в Монлуи симпозиуме по использованию солнечной энергии участникам продемонстрировали эту печь в действии.