Выпуск платиновых монет неожиданно оказал пользу науке. В лаборатории Петербургского Монетного двора скопилось довольно много остатков платиновых руд - отходов от производства монет. В 1841 году профессор химии Казанского университета Карл Карлович Клаус, который очень интересовался работами Озанна, попросил Монетный двор прислать ему для исследования два фунта этих остатков. К своему удивлению ученый обнаружил в них до 10% платины и небольшие количества осмия, иридия, палладия и родия.
Никого до этого не волновавшие остатки сразу превратились по сути дела в богатейший клад. Клаус немедленно сообщил о полученных результатах в Горное управление. Спустя некоторое время он приехал в Петербург, где его принял граф Канкрин, тот самый, что в свое время санкционировал выпуск платиновых монет. Канкрин внимательно отнесся к сообщению химика и оказал ему содействие в получении платиновых остатков для дальнейших исследований.
Упорный труд Клауса увенчался успехом: ему удалось доказать, что среди прочих, уже известных, элементов платиновые остатки содержат новый металл - рутений, о котором в свое время писал Озанн. Аргументация ученого оказалась настолько убедительной, что даже Берцелиус, вновь усомнившийся в рождении еще одного металла платиновой группы, в конце концов вынужден был публично признать ошибочность своих взглядов. За это открытие Клаус получил полную Демидовскую премию - 1000 рублей.
Добыча платины на Урале быстро росла. Показательно, что в 1915 году на долю России приходилось 95% от общего количества платины, добываемой в мире (остальные 5% получала Колумбия). В последнее время на мировой рынок начала поступать платина из Южной Африки, Канады, США, но СССР по-прежнему играет важную роль в добыче этого металла.
Любопытно, что если ежегодное мировое производство золота давно перевалило за тысячу тонн, то добыча платины и сейчас исчисляется лишь тоннами. Так, например, в 1960 году во всех капиталистических странах мира, вместе взятых, было добыто всего немногим более 16 тонн платины.
В этом нет ничего удивительного: слова поэта «в грамм добыча, в год труды» могут быть с полным правом отнесены к платине. Действительно, чтобы получить грамм этого металла, приходится порой перерабатывать сотни кубометров руды - целый железнодорожный вагон. Это объясняется чрезвычайной бедностью платиновых руд и отсутствием крупных месторождений платины. В самородном же состоянии она встречается крайне редко. Самый большой из когда-либо найденных самородков платины весил менее 10 килограммов.
Практическое применение этот металл начал находить еще в начале прошлого века, когда кому-то пришла в голову удачная мысль изготовить из него реторты для хранения концентрированной серной кислоты. С тех пор исключительно высокая стойкость платины по отношению к кислотам обеспечивает ей радушный прием в химических лабораториях, где она служит материалом для тиглей, чашей, сеток, трубок и других лабораторных атрибутов. Большое количество платины расходуется также на изготовление кислото- и жароупорной аппаратуры химических заводов.
Несмотря на то что платиновый винт, которым перемешивают стекломассу на знаменитых стекловаренных заводах Чехословакии, стоит три четверти миллиона крон, а платиновый тигель, где происходит этот процесс, - вдвое больше, «игра стоит свеч»: такое оборудование считается самым современным, позволяющим, получать высококачественные стекла для микроскопов, биноклей и других оптических приборов.
Химики нашли платине еще одно важное применение: она оказалась активнейшим катализатором для многих химических процессов. Эта способность платины позволила венгерским изобретателям создать недавно зажигалку нового типа: в ней нет ни традиционного зубчатого колесика, ни«кремня». Стоит снять колпачок - тотчас же появляется пламя: выходящий из зажигалки газ вспыхивает от соприкосновения с воздухом. Но эта реакция протекает лишь в присутствии катализатора. Им служит платиновое колечко, через которое вытекает газ. Такой зажигалке не страшен ветер. Более того, чем он сильнее, тем энергичнее идет реакция, тем длиннее язычок пламени. Как только кольцо закрывается колпачком, пламя гаснет.
В качестве катализатора платина совершенно необходима для окисления аммиака при производстве азотной кислоты. Смесь аммиака и воздуха с большой скоростью продувают через тончайшую платиновую сетку (имеющую до пяти тысяч отверстий на каждый квадратный сантиметр), при этом образуются окислы азота и водяные пары. При растворении окислов азота в воде и получается азотная кислота.
В практику заводского производства азотной кислоты платина вошла благодаря работам пионера отечественной азотнокислотной промышленности И. И. Андреева, в течение долгого времени изучавшего влияние различных катализаторов на окисление аммиака. Произошло это в годы первой мировой войны, когда потребность в азотной кислоте, необходимой для получения взрывчатых веществ, резко возросла. Еще бы: ведь на каждый килограмм взрывчатки расходовалось более двух килограммов азотной кислоты. К концу 1916 года месячная потребность русской армии во взрывчатых веществах составляла около 6400 тонн. Естественное сырье для получения азотной кислоты имелось лишь в Чили, поэтому все участвовавшие в войне страны, испытывая острейший азотнокислотный «голод», лихорадочно искали пути его утоления.
Тогда-то И. И. Андреев и предложил использовать в качестве искомого сырья аммиак, содержащийся в отходах коксового производства. Проведенные им до этого исследования убедили его в высоких каталитических способностях платины и в том, что в ее присутствии аммиак окисляется очень энергично. По предложению и проекту И. И. Андреева в Донбассе, где были сосредоточены коксохимические предприятия, а следовательно, имелось достаточно аммиака, начали строить завод для производства азотной кислоты, который летом 1917 года уже дал свою первую продукцию. Азотнокислотная проблема была успешно решена.
О громадном значении, которое к этому времени придавалось платине, можно судить по такому факту: в грозном для нашей страны 1918 году в России был организован специальный институт по изучению этого металла, вошедший позднее в состав Института неорганической химии Академии наук СССР. Здесь и поныне ведется большая научно-исследовательская работа, связанная с химией и технологией элементов платиновой группы.
В платине сегодня нуждаются не только химики. Способность хорошо впаиваться в стекло делает ее незаменимой для изготовления многих стеклянных приборов.
Нанося тончайший слой этого металла на стекло, получают платиновые зеркала, обладающие удивительным свойством - так называемой односторонней прозрачностью: со стороны источника света зеркало непрозрачно и отражает находящиеся перед ним предметы, как и обычное зеркало. Но с теневой стороны оно прозрачно, как стекло, и, таким образом, вы можете видеть все, что находится по другую его сторону. Платиновые зеркала получили одно время широкое распространение в США. Их вставляли вместо стекол в окна нижних этажей различных контор и учреждений, а в жилых помещениях они с успехом заменяли занавеси.
Кстати, первые платиновые зеркала, но не стеклянные, а «цельнометаллические», представлявшие собой хорошо обработанный и отполированный до блеска лист платины, изготовляли еще древние ацтеки. Как они это делали, - до сих пор загадка: ведь платина сваривается и хорошо куется только при белом калении, т. е. при очень высокой температуре, недоступной металлургам того времени. Но, как бы то ни было, знаменитый вождь ацтеков Монтесума послал несколько таких зеркал в дар королю Испании. Монарх «не остался в долгу»: в 1520 году Монтесума был взят в плен конкистадорами, а затем казнен.
Свойство губчатой платины поглощать большие объемы газа лежит в основе удивительного явления: водород или кислород, заключенные в герметически закрытый платиновый сосуд, при нагревании «вытекают» из него, поскольку молекулы газа проходят сквозь платиновые стенки сосуда, как вода сквозь сито.
Плодотворно трудится платина и на поприще измерения высоких температур. В технике довольно широко применяют платиновые термометры сопротивления. Принцип их действия основан на том, что при нагревании электрическое сопротивление платины возрастает по очень строгой и постоянной зависимости от температуры. Подключенная к прибору, регистрирующему изменение сопротивления, платиновая проволочка без промедления сигнализирует ему о самых незначительных колебаниях температуры.