Такой пейзаж можно представить себе где-нибудь на Марсе с воздухом, разреженным до необычайности! Или на Луне с тенями резкими, как у Рериха, где грани горных образований ничем не сглажены.
Два человека, по-разному одетые, но чем-то похожие друг на друга, сидят по обе стороны шахматной доски.
Махатм говорит размеренно, неторопливо. Его движения замедленны, но уверенны:
— Слава мудрым! Ваши знатоки цифр познали тайны скопления цифр в квадратах. Но напрасно они именуют их «магическими». Магии нет в мире! Нет ее и в цифрах! Все в науках, как и в природе, определяется непреложными законами. Мы, живущие, способны лишь их выявлять. В цифровом квадрате 155, будем так называть его, числа расставлены в расчете, что их сумма в любом горизонтальном или вертикальном ряду всегда одна и та же.
Для квадрата «насик» с 64 клетками сумма равна 260. Это легко проверить. 1+58+3+60+63+8+6+61=260 или 28+21+12+ +5+36+45+52+61=260.
Махатм говорил на превосходном английском языке с безукоризненным произношением, правда, порой растягивая гласные, что придавало его речи певучесть.
— Ты не удивишься, мой мудрый друг, когда две соседние двойки дадут в сумме 4. Но расставить цифры в квадрате, чтобы сумма их во всех рядах и диагоналях была постоянной, куда сложнее. Честь вашим знатокам цифр, нашедшим формулы для решения таких задач. Но пока, к сожалению, лишь для квадратов с нечетным числом полей. «Насик» с его 64 клетками можно построить с помощью специальных фигур.
— Математических символов?
— Скорее «мер», которыми отмеряют расстояние между порядковыми цифрами. У нас в Шамбале поразились, узнав, что наши подсобные математические фигуры послужили для создания великомудрой игры, в которой противоборствуют умы. Восхищения достойна красота, рожденная мудростью. Это закономерно, ибо в основе красоты — порядок, целесообразность, совершенство. А математика со своими фигурами передала игре именно эти свойства.
— Какими же были эти старые фигуры?
— Им не требовалось иметь те удлиненные ходы, которые придали мудрой игре глубину. Но король (главная фигура) имел доступ ко всем прилегающим к его полю клеткам. Ферзь же ограничивался лишь соседним полем по диагонали. Слон (я применяю ваши, современные названия) был подвижнее и мог ходить через клетку по диагонали. Ладья же — через клетку по горизонтали или вертикали.
— А пешка или конь?
— Их ходы остались прежними, но пешка не имела права делать два хода с начального поля, а конь не перепрыгивал через фигуры. Не было в этом надобности. Если хочешь, построим «насик» с помощью этих фигур. Ты можешь записать ходы, как это делают шахматисты.
— Я слаб в шахматах. Тем более в записи.
— У тебя есть помощник с тетрадью. Итак, поставим на a1-1.
И он показал.
— Итак, мудрый мой друг, «насик» готов наполовину. Не составит труда заполнить и оставшиеся поля. Тогда он отразит бесконечные законы математики.
— Бесконечные? — удивился Рерих.
— Он и сам станет бесконечным, как Вселенная, надо лишь уподобить его кругу, чтобы он соприкасался сам с собой всеми своими сторонами.
— Как это может быть?
— Очень просто. Сложи квадрат пополам по вертикальной линии между рядами «d» и «е». Полученную полоску с квадратиками полей сверни трубкой (156) и получишь кольцо. Поле а1 соседствует в нем с полем h1, на переходе с внешней стороны кольца на внутреннюю. Первый же горизонтальный ряд соприкасается с восьмым на обеих сторонах кольца. Как видишь, квадрат может примыкать к самому себе всеми сторонами. Я замечаю, ты все понял и даже нарисовал получившуюся фигуру в тетради ученика.
— Я смотрел на твой перстень, Учитель, и нарисовал его с цифрами на нанесенных квадратиках.
— Если бы ты на самом деле увидел на моем перстне цифры, ты принял бы его за талисман? Так знай: суеверие хуже религии, которая хоть в первоначальной форме основывалась на сотворении добра другим. Суеверие служит лишь для тебя самого.
— Ты поистине мудр, махатм!
— Я лишь тень нашей мудрости, обратившаяся к твоему народу со словами: «Привет вам, ищущим общего блага».
И он ушел, оставив Рериха размышлять обо всем услышанном.
Ушел, легко перепрыгивая с камня на камень, взбираясь все выше и выше, пока не скрылся исчезающей тенью в тумане, который со дна ущелья казался облаком.
На этом закончилась вызванная моим воображением картина, следствие которой, если хотите, можно рассматривать как гипотезу о чудесном математическом квадрате, что получается с помощью шахматных фигур.
Мы с Михаилом Николаевичем достроили его, заглядывая в старую тетрадь и подсчитывая суммы цифр вдоль и поперек, яростно щелкая на счетах, как заправские кассиры.
— Ну и что? — спросил я, откидываясь на спинку стула, — бухгалтерия ясна. Но при чем тут ваш алгоритм?
А я ведь тайно жаждал реванша с неведомой алгоритмической «машиной».
— Как при чем? — вспыхнул Михаил Николаевич. — Алгоритм вытекает из закономерностей, которые вы сейчас увидите.
— Какая связь? — пожал я плечами.
— Как вы не понимаете! — в отчаянии воскликнул Михаил Николаевич.
Мне даже стало жалко моего энтузиаста. Я ведь прикидывался, будто не понимаю, а на самом деле не прочь был овладеть алгоритмом. Чтобы выиграть у любого партнера? Что со мной? Ведь я всегда ценил в шахматах процесс игры, ее красоту, а не результат! Зачем же этот антихудожественный алгоритм? И в состоянии внутренней борьбы узнавал я о преследованиях шахматной жар-птицы.
— «Насик», — объяснял Михаил Николаевич, — обладает более совершенными свойствами, чем обычные магические квадраты.
В поисках алгоритма я проверил все…все!
«Сейчас проговорится!» — чуть ли не с опаской подумал я, не пропуская ни слова.