Выбрать главу

— В «насике» не только вертикальные и горизонтальные ряды, но также и любые диагонали, так остроумно превращенные махатмом в спирали, дают сумму цифр восьми полей равную 260!

Но это далеко не все! Вокруг центрального квадратика из четырех полей (157) можно построить квадраты из 16, 36 и, наконец, из 64 полей. И сумма цифр угловых полей на всех этих квадратах будет 130! И все это построение можно сдвинуть в любую сторону. Ничего не изменится! (158) Самое интересное, что на «насик»

можно нанести сетку прямоугольную (159) и сетку диагональную (160). В узлах, отмеченных на сетках, окажутся определенные цифры. Их сумма в любом квадрате из 2, 4, 6 и 8 полей в стороне всегда равна 130. Но есть еще особый случай: квадрат с пятью полями! (161) На первом ряду он отмечен полем е1 (на котором, заметим, поставлен белый король!). Это как бы золотое сечение: 5 полей и 3 поля слева и справа в горизонтальном ряду дают суммы два раза по 130! Такую же сумму 130 дают и узловые поля пятипольного квадрата, где бы он ни был расположен в «насике». Диагональная сетка выражена двумя прямоугольниками, — расположенными крест-накрест в каждой четверти (квадрата) «насика». Прямоугольники складываются из двух квадратов каждый. Отмеченные на них узлы приходятся на цифры, которые для каждого диагонального квадрата дают те же 130!

— Преклоняюсь перед волшебством. Но при чем тут шахматы?

В том-то и дело, что не только шахматы. Сетка-то напоминает кристаллическую решетку! Но начнем с шахмат. С расстановки фигур (162). Цифры на полях a1, h1, a8 и h8 в сумме дают 130! Это для ладей! Но то же самое и для слонов: b1, f1, b8, f8, и для коней: b1, g1, b8, g8, и, наконец, для короля и ферзя суммы цифр опять будут 130! Все фигуры занимают целиком ряд с константой 260, точно так же, как и каждый из рядов пешек.

— Случайность, — сделанным равнодушием заметил я. — Просто фигуры поставлены в ряд, где цифры подобраны.

— Какая же это случайность, когда можно рассмотреть ходы фигур, а не только их первоначальное положение? Король! Вы же заметили, что каждые четыре поля в любом квадратике доски дают сумму цифр 130. А если поставить рядом два таких Квадратика, можно и со сдвигом на одну клетку (или даже на две)?

В восьми полях будет сумма 260! А что это за восемь полей (163)?

Это же поля, которые может последовательно занять король при своих семи ходах! Так что и ему в движении присуща та же константа. Так ведь и с другими фигурами та же история!

— Вы так думаете?

— Знаю! Ферзь. Поставим его в угол на a1 (164). Восемь последовательных полей, которые он займет при семи ходах в одном направлении, дадут сумму цифр 260, как в полной диагонали.

А если она спиральная, то начинать можно в любом месте «насика» и двигаться в любую сторону. Более того! Если ферзь начнет путешествовать по узлам диагональной сетки, похожей на кристаллическую решетку, то может обойти получившиеся фигуры так, чтобы пройти оба квадрата по восьми полям, что в сумме цифр опять даст 260. Может ферзь пройти и другими путями, которые видны на диаграмме. Ну как?

— Совпадение.

— Тогда что вы скажете о ладьях (165)? Двигаясь навстречу друг другу в любом месте «насика», они займут весь ряд с его константой 260. Современные ладьи дают тот же результат и без встречного движения. Причем ладья может начинать с любого поля доски.

— Уже доски?

— А что вы скажете о слонах, которые, двигаясь по спиральным диагоналям навстречу друг другу, опять-таки дают константу? Современные ходы лишь облегчают получение константы.

Например: 1. Ch8, 2. Сb2, 3. Cg7, 4. СсЗ, 5. Cf6, 6: Cd5, 7. Се5.

Остались еще конь и пешки!

— Я вас понял. В старом анекдоте во время экзамена поп старался выдавить из семинариста слово «чудо» и спрашивал: «Что это такое, когда человек упал с колокольни и остался жив?»

«Случайность», — ответил растерявшийся семинарист. Упрямый поп все наводил семинариста на верный ответ: «Ну, а если второй раз человек упал с колокольни и остался жив? Что это такое?»

«Совпадение, ваше преподобие», — еле вымолвил вспотевший семинарист. Поп рассвирепел, затряс гривой: «А ежели в третий раз человек упал с колокольни и жив остался, что это такое? Ответствуй!» Тут семинарист выпрямился и отчеканил: «Привычка!»— и стал несостоявшимся попиком.

— Так вы хотите сказать, что с конем и пешкой это уже «привычка»? — вскипел Михаил Николаевич.

— Вы все хотите, чтобы я произнес «чудо»? — пытался я улыбкой успокоить его.

— Так я вам покажу нечто непривычное. В пифагорову теорему верите?

— Я кивнул.

— Неверна она тут для коневой диагонали!

— Это как же? Ее как будто тоже в Индии доказали.

И я вспомнил это доказательство (l08, 109).

— Совершенно верно. Как известно, Пифагор бывал в Индии и мог узнать о доказательстве, принесенном из Шамбалы.

— Опять Шамбала?

— Конечно! Все, что я рассказывал, — все из Шамбалы. Так вот! Конь! Коневая диагональ (166), проведенная через поля, по которым пройдет конь, затронет за один оборот спирали четыре поля и восемь — за два, когда квадрат будет пройден от края до края, сумма цифр при этом будет 130+130=260! И что самое интересное, если строить после трех ходов коня треугольник на его диагонали, как на гипотенузе, с катетами на сторонах квадрата, то сумма цифр гипотенузы будет просто равна сумме цифр малого катета. Вот вам и Пифагор!

— Так то сумма цифр, а не длина! Это что-то новое.

— Новое — значит непривычное. А вы говорите «привычка»!

Теперь пешки! Выстроенные в ряд, они дают константу. Но если они передвинутся и две из них побьют в разные стороны, то новый ряд снова даст константу (167). Движение же центральной пешки (168) — d3-de-ed-d6-d7-d8 дает ту же сумму цифр 260.

Или черная пешка а7. Она идет по полям а6-а5-а4-аЗ-Ь2, и теперь взятие или на а1 или на с1. В одном случае сумма цифр будет 259, а в другом 261. В среднем та же константа 260, хотя пешки проходят не восемь, а лишь семь полей.