(Когда Марс находится за Солнцем, можно совершить и живописный полет длиной более 500 миллионов миль — насколько именно «более», зависит от того, как легко к вам пристает загар. Советую выбрать не менее 700 миллионов.)
Теперь у вас есть все необходимые данные для расчета времени полета Земля-Марс-Земля на КПУ — любом КПУ, — когда Марс в противостоянии. (Если вы настаиваете на живописном путешествии, но не имеете права принимать траектории за условно прямые линии, а космос считать плоским — полет пойдет как бы слегка в гору. Для расчетов потребуются помощь Алдерсона или специалиста такого же уровня и большой компьютер, а не карманный калькулятор, а уравнения расчетов такие, что волосы встают дыбом.)
Нам понадобится только одно уравнение: скорость равна ускорению, умноженному на время полета: V=a*t.
Отсюда получается, что наша средняя скорость равна половине a*t, а из этого вытекает, что пройденный путь определяется как средняя скорость, умноженная на время.
Только помните еще о двух вещах: I) путешествие состоит из четырех участков — разгон до середины пути, разворот и торможение; потом те же операции на обратном пути. Примем длину каждого из участков равной 30 миллионам миль, поэтому вычислим длительность каждого и умножим на четыре (Дэн, не хмурься, это же приближенный расчет).
2) Пользуйтесь одинаковыми единицами измерения. Если начали с сантиметров, считайте и далее в сантиметрах, если в милях, то и далее в милях. Четверть пути равна 30 миллионам миль, или 4.827 X 10 в 12-й степени сантиметрам.
И последнее: поскольку нам нужно именно время полета, преобразуем последнее уравнение таким образом, чтобы вы получили ответ на калькуляторе за одну операцию. Я уже сделал так много упрощений и отбросил столько мелких переменных, что буду рад получить ответ с точностью до двух значащих цифр.
Итак, если d/(0.5a)=1 в квадрате, то t равно квадратному корню из d/(0.5a).
Вводим в калькулятор расстояние (d) 30 миллионов миль, делим на половину от 0.1g. Нажимаем кнопку квадратного корня. Умножаем на четыре. Мы получили время пути, выраженное в секундах, поэтому делим его на 3600, получаем в часах, делим еще на 24 и получаем в днях.
Тут вам полагается удивиться и начатать искать ошибку. Пока вы этим занимаетесь, схожу возьму пива из холодильника.
Ошибки нет. Пересчитайте снова, на этот раз в метрической системе. Найдите справочник и проверьте уравнения. Ответ вы найдете чуть ниже, но пока в него не заглядывайте; мы поговорим о других путешествиях, которые вы сможете совершить в 2000 году, если говорите дома на японском или немецком — или даже английском, если Проксмайр и его присные не будут переизбраны.
Подсчитайте длительность того же пути, но только при ускорении в одну сотую g. При такой тяге я буду весить меньше собственных ботинок.
Гм-м! Получается, что один из ответов ошибочный.
Потерпите немного и на этот раз повторите вычисления для ускорения в одно g — того самого, что вы испытываете, лежа в кровати. (См. статью Эйнштейна, написанную в 1905 году)
(Странно. Должно быть, все три ответа ошибочны.)
Потерпите еще немного. Давайте решим все три задачки снова, но для полета к Плутону — в 2006 году плюс или минус год. Почему именно в этом? Потому что сейчас Плутон нырнул внутрь орбиты Нептуна и не достигнет перигелия до 1989 года, а я хочу, чтобы он находился подальше — у меня в шляпе припасен кролик.
Плутон вынырнет обратно в 2003 году и в 2006 году будет (с точностью до пары миллионов миль) на расстоянии в 31.6 астрономических единиц (АЕ) от Солнца. Одна АЕ равна 92.9 миллиона миль, или 1.496 X 10 в 13-й степени сантиметрам.
Теперь посчитайте длительность полета туда и обратно (63.2 АЕ) с постоянным ускорением в одну, одну десятую и одну сотую силы тяжести. Свои труды мы посвятим Клайду Томбо — единственному живущему среди нас человеку, открывшему новую планету и затратившему на это месяцы кропотливого труда по изучению тысяч астрономических фотографий.
Некоторые полагают, что Плутон некогда был спутником другой планеты, и его малые размеры делают это предположение вероятным. Но сейчас это не спутник. Он и слишком велик, и слишком далек от Солнца, чтобы быть астероидом или кометой. Так что это планета — или нечто настолько экзотичное, что представляет собой еще более ценную добычу.