Как видите, Шрамм рассматривает информацию как идеальный фактор, совершенно независимый от своего материального носителя, что, конечно, совершенно ненаучно, так как информация может быть закодирована и передана с помощью самых разнообразных сигналов материального характера, и это вовсе не свидетельствует об идеалистическом харак-тере информации.
Для исследований в цитологии, как и в биохимии, физиологии, биологии и других биологических науках, весьма характерен подход, который носит название редукционизма. Редукционистский подход состоит в том, что познание сложного, составного, целостного, в том числе и клетки, проводится через расчленение сложного на возможно более простые части, которые и являются фактическим предметом изучения. У нас, в цитологии, клетки разрушают с помощью различных весьма изощренных методов, изолируют составные их части оболочку, ядро, органоиды - и изучают их свойства, структуру и функции. Не может быть сомнений в том, что на этом пути цитология добилась выдающихся успехов. Мы теперь знаем очень подробно о структуре и функции мембран, ядра, митохондрий, рибосом, лизосом и т. д.
(Razum06.gif) Микроскоп Р. Гука (XVII в.).
Но нужно не забывать, что целое всегда больше, чем сумма отдельных его частей. Мы хорошо знаем, что свойствами поваренной соли не обладают ни натрий, ни хлор. Точно так же характерные свойства биополимеров, например белков, невозможно предсказать на основании свойств образующих их мономеров. Ясно поэтому, что сведение сложного явления, каким является клетка, к сумме его частей, требует и умения пройти этот путь в обратном направлении, то есть от суммы частей перейти к системе, от расчлененности целого к его воссозданию, от редукционизма к ин-тегратизму. Здесь встают задачи дальнейших исканий цитологии: не отбрасывая редукционный подход, напротив, всячески его совершенствуя, продолжать двигаться в сторону изучения и более высоких уровней организации.
(Razum07.gif) Срезы пробки под микроскопом Гука (первое изображение клетки).
Кстати, сейчас широко распространилось представление о биологической иерархии структур, о разных уровнях организации - субклеточном, клеточном, тканевом организ-менном, популяционном и т. д. Не следует, однако, думать, что, чем выше положение объекта в иерархии, тем он сложнее. Популяция, состоящая из множества индивидуумов, несомненно, гораздо проще каждого из индивидуумов, а такой низший многоклеточный организм, как губка, несомненно, организован проще, чем составляющие его клетки. Это, вероятно, объясняется тем, что путь от начальных примитивных живых форм до одноклеточного организма был куда более длинный, чем от одноклеточной формы до начальных этапов филогенеза. Конечно, на более поздних его этапах - на уровне человека, например, организменный уровень системы сравним или даже превосходит сложность клеточной организации.
(Razum08.gif) Современная схема строения живой клетки.
Возвращаясь к проблеме соотношения редукционистского и интегративного подходов в исследовании клетки, нужно сказать, что если первый из этих подходов принес цитологии большой и общепризнанный успех, то второй путь делает также хотя и самые первые, но уже успешные шаги. В качестве примера можно привести данные о самосборке.
Известно, что многие белки обладают так называемой четвертичной структурой, то есть состоят из субъединиц, которые в подходящих условиях самопроизвольно соединяются между собой с образованием исходной четвертичной структуры. Такой способностью обладает, например, гемоглобин, уреаза и некоторые другие белки. Подобный же процесс самосборки удается наблюдать и на более сложных структурах, например на рибосомах, на мембранах, на вирусах и бактериофагах. Эти структуры построены из разных молекул биополимеров - белков, нуклеиновых кислот, липидов. В рибосомах, например, содержится три разных типа нуклеиновых кислот и около 20 различных индивидуальных белков. В частицу вируса табачной мозаики входит кроме нуклеиновой кислоты более 2000 одинаковых молекул белка. И все эти сложные структуры самопроизвольно собираются из смеси своих составных частей. А недавно известный цитолог Дж. Даниэли описал результаты опытов с самосборкой амеб.
Амебу - одноклеточный организм - расчленили на составные части: оболочку, ядро, цитоплазму. Затем эти компоненты, полученные, разумеется, от большого числа особей, снова смешивали и наблюдали образование заново целых клеток из частей разных индивидуумов: оболочка от одного, ядро от другого и цитоплазма от третьего. Такие "сборные" амебы, по описанию Даниэли, обладают свойственной этим клеткам способностью к движению и размножаются. Следовательно, и на таком сложном организме, как амеба, доказана возможность ее самосборки из составных частей. Однако на пути выяснения свойств интегрированной клеточной системы стоит еще очень много нерешенных вопросов.
Чем больше мы узнаем о структуре клетки и как она работает, тем больше проникаемся мыслью, что самые сложные технические устройства, сконструированные человеком, самые блистательные успехи синтетической химии, самые выдающиеся достижения в области организации производства не идут в сравнение с исключительной сложностью клетки, с поражающим разнообразием, быстротой и эффективностью осуществляемых в ней синтезов, с совершенством ее управления и фантастической миниатюрностью.
Как осуществляется управление этими процессами? Нужно также учесть, что жизнь клетки жестко регламентирована во времени: этапы клеточного цикла четко следуют один за другим, и этим стадиям подчиняется жизнедеятельность клетки. Но как работают эти "клеточные часы"?
В клетке одновременно происходит множество процессов - одни вещества расщепляются, другие синтезируются; происходит заготовка энергетических веществ в запас; заготавливаются материалы, которые потребуются клетке, когда она приступит к делению. Как достигается эта удивительная согласованность всех процессов, как возникает и поддерживается ее целостность? Еще одна тайна - движение веществ внутри клетки и целенаправленные движения самих клеток. Мы знаем, что информационная РНК синтезируется в ядре, но как она переходит из ядра в цитоплазму и как она внедряется в рибосому, остается еще полностью невыясненным. Нужно при этом учесть, что синтезированные вещества перемещаются на расстояния нередко в тысячи раз большие, чем размеры молекул.