Третье правило: начинать обсуждение каждого вопроса в восходящем порядке, т. е. с простейших и легчайших понятий, переходя потом к самым сложным, причем необходимо предполагать связный порядок и там, где понятия сами собою не представляются в такой связи между собою, как предыдущие и последующие.
Последнее правило: во всем делать столь подробные исчисления[13] и обозрения настолько пространные, чтобы не оставалось никаких опасений относительно пропуска чего-либо.
Мне казалось, по поводу этих длинных рядов суждений, простых и легких, которые употребляются геометрами для доказательства самых трудных теорем, что во всех вопросах, доступных человеческому пониманию, суждения могут связываться таким же образом. Мне казалось, что нет познаний столь отдаленных, которых нельзя было бы достигнуть, настолько скрытных, чтобы нельзя было их разъяснить, если только в ряды посредствующих суждений принимаются исключительно суждения вполне верные и порядок логической последовательности и зависимости между понятиями всегда строго соблюдается. Затрудняться относительно того, с каких истин начинать изыскания, мне не пришлось, во‐первых, потому, что я уже знал, что надобно начинать с простейших, а во‐вторых, обратив внимание на то, что из всех изыскателей истины в науках одним математикам удалось найти кое-какие доказательства, т. е. основания верные и очевидные для науки, я не мог сомневаться в том, что изыскания мои должен начинать именно с математических истин. При этом я очень хорошо понимал, что математические истины не принесут мне иной пользы, как дадут только навык моему уму довольствоваться истинными и не довольствоваться ложными доказательствами. Для такого начала я не имел, однако ж, намерения изучать все эти отдельные науки, которые причисляются к математике, так как, несмотря на разнообразие предметов, обнимаемых математическими исследованиями, математика занимается одними отношениями и пропорциями, существующими в предметах. Поэтому я и нашел нужным рассматривать одни пропорции вообще, предполагая притом существование математических отношений только там, где удобно их изучать, но вместе с тем отнюдь не ограничивая приложения пропорций одним родом предметов, чтобы не лишать себя возможности прилагать математические основания и ко всем тем вопросам, в которых это только доступно. Потом, обратив внимание на то, что для познания математических отношений мне придется или рассматривать каждое из отношений в отдельности, хотя бы для одного удержания в памяти, или придется рассматривать по нескольку отношений вместе, то нашел самым удобным в первом случае представлять их линиями, не находя ничего проще и ничего доступнее этого для понимания и воображения; для изучения же и удержания в памяти нескольких математических отношений вместе я избрал численные выражения, по возможности самые краткие. Таким образом, я надеялся взять лучшее из метода как геометрического, так и алгебраического, пополняя один метод другим.
Действительно, результатом найденных мною немногих правил была, смею сказать, такая легкость в разрешении всех вопросов геометрии и алгебры, что в два или три месяца занятия этими науками, при постоянном восхождении от простейшего и общего к сложному и частному и при обращении каждой найденной истины в основание для дальнейших разысканий, я не только разрешил задачи, казавшиеся мне прежде очень трудными, но даже подумал, наконец, что могу определить и в неизвестных мне теоремах, каким путем и до какой степени их возможно решить. Читатель не сочтет меня тщеславным по поводу этого заявления, если обратит внимание на то, что в каждом вопросе может быть одна только истина и что тот, кто нашел эту истину, знает настолько по вопросу, насколько вообще можно о нем знать. Так, например, ребенок, знающий арифметику и сделавший правильно сложение, может быть уверен, что нашел относительно полученной им суммы все доступное уму человеческому, потому что арифметический метод, научающий истинному порядку в исчислении всех условий задачи, придает правилам арифметики совершенную законченность.
Найденный мною метод более всего меня удовлетворял в том отношении, что я всякий вопрос мог обнимать своим разумом, если несовершенно, то, по крайней мере, насколько это для меня доступно. Кроме того, я замечал, следуя своему методу, что мой ум постепенно привыкал к более точному и ясному пониманию предметов, а так как я не присваивал свой метод исключительно какому-нибудь одному роду вопросов, то мог еще надеяться на приложение его, не менее полезное, в других науках кроме алгебры[14].
13
В латинском переводе добавлено – «как отыскивая центр вещей, так и просматривая затруднения во всех частях» (
14
В латинском переводе – «в геометрии или в алгебре» (