А. Ну, с этой черепахой уже перестали носиться ..
К. Но ведь есть и другие модели живого. Сконструирована электронная белка. Она собирает орехи и торопливо уносит их в свое гнездо. Правда, и орехи и гнездо условны. Гнездо - только белый квадрат, начерченный на полу. Тем не менее белочка умело справляется со своей задачей.
А. Это известные примеры.
К. Я могу рассказать и о вещах поновее. Американские кибернетики создали модель человеческой руки, которая сама собирает кубики, разбросанные по столу, и укладывает их в определенном порядке в коробку.
Электронный аппарат должен найти коробку, определить положение ее и кубиков. Для человека это несложно. А для машины - это серьезная задача.
А. Здесь лишь пытаются повторять живое.
К. Но ведь в частностях мы, машины, можем свободно его превзойти. Пожалуйста. Электронный глаз, который видит сквозь непрозрачное. Электронное ухо, которое улавливает неслышимые звуки. Электронное осязание, ощущающее тепло инфракрасных лучей в полной темноте. Да мало ли еще других вещей?!
А. Так что же получается, Кибер? Строя машины по живому подобию, возможно, в частности, не только достигнуть то или иное свойство живого, но и превзойти его. А в комплексе? Живое вряд ли возможно воспроизвести во всем его многообразии?..
На Пожалуй, на сегодня вы правы. Но можно ли поручиться за будущее?
ПО ЖИВОМУ ПОДОБИЮ
Бесконечен путь эволюции живого. Где, на каких глубинах истории зародилась живая клетка? Кто дал первый толчок Жизни - тепло, свет или электрические разряды молний? Но, родившись однажды, жизнь начала стремительно развиваться. Миллионы лет природа шлифовала, оттачивала, развивала все живое. И даже сегодня, создавая кибернетические машины, строя удивительные станки и аппараты, рождая в хитросплетениях мысли новые теории и гипотезы, мы все еще не можем понять многие секреты природы.
Всего несколько лет назад возникла новая наука - бионика. Владения ее разместились на пограничной полосе между биологией и техникой. Это та зона, которая всегда наиболее плодотворна, ибо два направления питают ее, придают силу новой науке.
Как использовать в технике то, что на протяжении всей эволюции создавала природа? Неверно было бы говорить, что самолет повторяет птицу, что корабль подобен рыбе. Нет, они далеко не схожи. Но в мире есть отдельные элементы, отдельные части живого, которые могут быть полностью освоены как принцип, как идея.
Миллиарды лет живые организмы приспосабливались ко всем изменениям окружающих условий. Природа создала поразительные формы живого полета, плавания, перемещения в пространстве. Природа дала живым организмам и приспособляемость и, наконец, средства связи между собой.
Высшим созданием природы явился мозг, как его назвал физиолог И. П. Павлов - "высшее творение на земном шаре".
Изучить все это богатство, выработанное эволюцией, освоить основы работы мозга - вот центральный вопрос бионики и кибернетики.
Японские инженеры тщательно изучили форму кита и характер его плавания. И вот было создано судно китообразной формы. Выяснилось, что мощность двигателей нового корабля на 25 процентов меньше при той же скорости и грузоподъемности.
А что может быть неповоротливее пингвина? Однако он придумал способ движения по снегу. Чтобы не зарываться в снег, пингвин ложится на белый пух своим обтекаемым телом и энергично, словно веслами, работает крыльями-ластами.
Именно по этому принципу и создаются сейчас вездеходы - не на лыжах и не на гусеницах. Вездеход нового типа как бы лежа скользит по мягкому снегу, совершенно свободно выходит на воду и вновь взбирается на лед.
Вспомните обыкновенный подсолнечник, который всегда поворачивается к солнцу. А как он это делает? За счет чего создается усилие поворота? Как поток световых лучей вращает в одном направлении миллионы желтых соцветий? Пока эта тайна природы не раскрыта. А как много может это дать науке солнечным машинам, фотоэлементам?
Существуют породы рыб, обладающие феноменальным обонянием. Если в литре воды находится одна стомиллиардная часть пахучего вещества, то есть частица, не уловимая никакими научно-техническими средствами, рыба чувствует ее. Даже хорошо нам знакомая обыкновенная собака различает до полумиллиона запахов, абсолютно недоступных человеку.
Ученые работают над локаторами запахов. Чувствительность их может быть доведена до едва различимых пределов. Представьте себе, что где-то на юге Каспийского моря в воду пустили одну каплю ароматического вещества. С помощью локатора запахов вы можете обнаружить около устья Волги, что это за вещество и где оно было запущено.
А разве поразительная способность крысы ощущать радиацию не заставляет нас задуматься о механизме этой способности?
Чрезвычайно важно в наш атомный век научиться быстро распознавать радиоактивность. А может быть, где-то в глубинах человека тоже есть анализаторы радиоактивности?
Неоднократно говорилось об удивительной способности летучих мышей в полной темноте не наталкиваться на препятствия. После долгих исследований было установлено, что летучие мыши обладают секретом звуковой локации. Они издают во время полета неслышимые звуки, отражение этих звуков от предмета и дает им возможность ориентироваться в пространстве. Учитывая время возвращения этих сигналов, летучая мышь абсолютно точно ориентируется в пространстве. Но за последнее время была обнаружена и другая особенность. Некоторые летучие мыши, быстро проносясь . над водою, без промаха хватают рыбу, плавающую близко к поверхности. Что же происходит? Ведь известно, что 99 процентов звуковой энергии отражается от поверхности воды. Сколько же энергии доходит обратно к летучей мыши, если^к рыбе поступает всего один процент колебаний сквозь слой воды?
Недавно был создан гироскоп принципиально новой конструкции, использующий тончайшие вибрирующие пластинки. Как вы думаете, откуда родилась эта идея? В результате наблюдения за организмом насекомых. Многие из двукрылых насекомых имеют жужжальца. Когда изменяется направление полета, в дрожащем жужжальце возникает дополнительное напряжение, а соответственно и раздражение, которое передается в головной мозг насекомого. Тем самым насекомое корректирует направление полета. Этот принцип и был использован в гироскопе.
Совсем недавно был изобретен прибор, измеряющий ускорение, так необходимый для самоуправляющихся снарядов и ракет. Принцип этого прибора был найден при изучении вестибулярного аппарата человека. Малейшее ускорение вызывает перемещение жидкостей в сосудах, куда опущены электроды.
Во время войны были использованы исключительные способности тюленей слышать звуки. Как известно, тюлени на огромном расстоянии улавливают шум гребных винтов. Американский физик Роберт Вуд попытался использовать эту особенность ушей тюленя. Сегодня чувствительность тюленя уже получила применение в гидрофонах.
Долгое время загадкой была скорость движения дельфина. Он свободно обгоняет любой корабль, и было непонятно, где в таком небольшом объеме теле животного - заключен такой мощный мотор. Оказалось, что дело вовсе не в моторе, а в особой структуре кожи животного. Дельфин скользит в воде с минимальным сопротивлением, так как кожа его не производит никаких турбулентных, вихревых движений. Сейчас за рубежом пытаются проектировать суда, поверхность которых имитирует кожу дельфина.
Непонятно было, как гремучая змея в абсолютной темноте совершенно точно нацеливается на свою жертву. Дело не в том, что ее глаза якобы видят в темноте. Ничего подобного! Оказывается, у гремучей змеи есть исключительно чувствительный инфракрасный локатор. Ом улавливает разность температуры в 0,001 градуса - он-то и направляет смертоносный укус змеи. По этому принципу строятся сейчас тепловые локаторы большой чувствительности.
Ученые установили, что нильская рыба "водяной слон" обладает поразительным локатором, расположенным на спине. Излучая из хвостовой части колебания, нильский "водяной слон" воспринимает их отражение от приближающегося противника небольшим участком кожи на спине. Подобные приборы создаются сегодня. Они используют электромагнитные волны и применяются в мореходстве и в авиации.