Все, что мы уже изучили, мы учили не зря. Теперь Вы уже можете разобраться в том, почему «безнадежно устаревшие» советские истребители «не могли догнать» немецкий бомбардировщик.
Тонкое с виду крыло является главным источником аэродинамического сопротивления. Парадоксально, но это именно так. Соответственно, увеличение удельной нагрузки (т. е. уменьшение площади крыла) является одним из самых эффективных способов достижения большой скорости полета. Для иллюстрации этого вывода стоит привести один хрестоматийно известный, пример. Гоночный самолет «Супермарин» S-6B, установивший в 1931 году мировой рекорд скорости, был… поплавковым гидросамолетом! Аэродинамическое сопротивление двух огромных (длиной с фюзеляж) поплавков с подкосами и расчалками не помешало разогнать самолет до скорости 655 кмчас, что вдвое превышало скорость серийных истребителей того времени. У этого чуда техники было два объяснения: феноменальный мотор «Роллс-Ройс» и очень высокая для той эпохи удельная нагрузка на крыло — 178 кг/кв.м. А для того, чтобы самолет с таким «маленьким крылом» мог взлететь и успешно приземлиться, конструктор Реджинальд Митчелл (будущий создатель легендарного «Спитфайра») выбрал схему гидросамолета, который и садится на «мягкую» воду, и разгоняется на «взлетной полосе» практически неограниченной длины…
Военная авиация начиналась с удельной нагрузки 30–40 кг на квадратный метр и крыла, форма профиля которого обеспечивала коэффициент подъемной силы 0,7–1,0. При таких параметрах для отрыва от земли требовалась скорость порядка 80— 100 км/час. Такая небольшая взлетная скорость делала возможным эксплуатацию самолетов с простейших грунтовых аэродромов, а требования к максимальной скорости полета были тогда очень скромными: летает быстрее паровоза, и ладно. Затем, на рубеже 20—30-х годов появились технические и тактические предпосылки к значительному увеличению удельной нагрузки.
Технические состояли главным образом в том, что были разработаны, испытаны и внедрены в практику разнообразные «средства механизации крыла»: закрылки и предкрылки. (См. рис. 3)
Рис. 3
Эти устройства позволяли кратковременно (на момент взлета-посадки) увеличить кривизну профиля крыла, увеличить площадь крыла (выдвижные закрылки) и максимально допустимый по условиям срыва потока угол атаки (этот эффект обеспечивают предкрылки). (См. рис. 4)
Рис. 4
Все эти меры в совокупности позволили увеличить коэффициент подъемной силы до 2–2,5 единицы. Соответственно, даже при сохранении взлетной скорости не более 100 км/час стал возможным рост удельной нагрузки на крыло с 30–40 до 120–130 кг/кв.м. Затем к техническим усовершенствованиям добавилось изменение взглядов военного руководства на тактику применения боевой авиации. Для бомбардировщиков с радиусом действия в 500—1500 км перестало быть необходимым базирование на грунтовых аэродромах в непосредственной близости от линии фронта. Дальние бомбардировщики могли вылетать на задание с небольшого числа крупных аэродромов, расположенных в глубоком оперативном тылу и оборудованных бетонными взлетно-посадочными полосами большой (1–2 км) длины. Бетонная полоса сделала возможным увеличение безопасной посадочной скорости до 130–150 км/час. С учетом квадратичной зависимости подъемной силы от скорости полета такой рост допустимой посадочной скорости теоретически позволял увеличить удельную нагрузку до 200–250 кг/кв.м.
Практически так «далеко» дело зашло не сразу, но уже во второй половине 30-х годов в серийное производство были запущены бомбардировщики с удельной нагрузкой 140–160 кг/кв. м, (немецкий «Дорнье-17», советский «ДБ-3», английский «Бленхейм», итальянский «Савойя-Маркетти-79»). И это, как показала практика, было только началом процесса неуклонного роста удельной нагрузки. Немецкий «Юнкерс-88» и советский «Пе-2» уже в первых своих модификациях имели удельную нагрузку 190 кг/кв. м, а закончили мировую войну бомбардировщики (советский «Ту-2» и американский В-26) с удельной нагрузкой 230–250 кг/кв. м и максимальной скоростью полета, соответственно, 547 и 510 км/час.